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Abstract: Aluminum hydroxide is a key product for the industrial production of alumiana and 

aluminium, ceramics insulator and refractories, desiccants, absorbents, flame retardants, filers for 

plastics and rubbers, catalysts, and various construction materials. The production of these arrays of 

useful material products is grounded on the multiple thermal decomposition pathways of Al(OH)3, which 

involve major crystallographic dislocations and many microstructure reconfigurations on variable lines 

of phase transitions, from the raw material up to large varieties of precursors and commercial grade 

products. A wide range of literature on this subject is available, and recent reviews cover suitable 

information about preparation and characterization of different activated alumina products with specific 

properties and applications. In our previous papers, there was studied the mechanisms of aluminum 

hydroxide phase transitions, during low temperature calcination, namely, at 260ºC, 300ºC, 400ºC and 

600 ºC, under chosen particularly conditions, for promoting the nucleation of the amorphous phases. 

Collected data suggest that raw aluminum hydroxide; dried, milled and classified is a precursor for the 

new low temperature activated alumina transition phases, carrying distinctive characteristics and 

properties, due to products enrichment in amorphous phases. Accordingly, as effects of the main driving 

factors (temperature and rate of heating, and initial particle size dimension) on the aluminum hydroxide 

as new precursor, notable changes were observed in products mineral composition, morphology and 

specific surface area, pore size, pore distribution, and the particle size distribution. Beside, some other 

secondary effects have to be apprehended. For example, the main phase transition process dinamic 

factors control over some physical and technical properties of the new products, like: absolute density, 

brightness, oil absorption capacity and water absorption capacity. The purpose of this work was to 

continue the characterization of low temperature activation alumina products, and also, to measure the 

adsorption capacity and to reveal adsorption kinetics mechanisms. Thus, the first step of survey was 

silver adsorption maximum capacity measurements for all sample prepared by heating the precursor 

alumina hydroxide, milled and classified as 5 different dimension size fractions to 260, 300, 400 and 

600ºC. Hereinafter, four samples, carefully selected as representative for the entire lot of samples, were 

used for the study of kinetics mechanism and data fitting to the adequate kinetic equations. Confident 

data validate the pseudo second order kinetic model for the entire activation process, independently of 

samples heating temperature and particles dimension.  

 

Keywords: aluminium hydroxide, activated alumina, silver, waste water, adsorption, kinetics 

 
 

*email: laurentiu_filipescu@yahoo.co.uk 

https://revistadechimie.ro/
https://doi.org/10.37358/Rev


Revista de Chimie                                                                                                                                                                
https://revistadechimie.ro   

https://doi.org/10.37358/Rev.Chim.1949 

 

Rev. Chim., 73 (2), 2022, 17-32                                                                      18                                 https://doi.org/10.37358/RC.22.2.8516                                         
    

 

 

1. Introduction 
Metallic silver has many industrial uses in the production of mirrors, photographic films, batteries, 

electrical and electronic components, catalysts and antimicrobial materials. as well as anticorrosive 

materials and galvanic coatings. Due to the excellent properties of silver, such as malleability, high 

thermal and electrical conductivity, high resistance to corrosion and oxidation, its widespread use in 

various fields of industrial use has led to a significant impact of silver on the environment and especially 

on waste waters  Silver, as toxic threat for health and environment is acting by full toxicity to all living 

cells, by depositing around nerves and in deeper skin layers, which may cause permanent skin damage 

and by associating with environmental contamination of other toxic heavy metals such as mercury and 

lead, Also, silver contributes to antibiotic resistance, disturbs bacterial activity when cleaning sewage 

and prevents the use of sludge as fertilizer, needed for nutrient recycling [1-6]. The main pollution 

sources with silver are: wastes from batteries production and recovery (Ni, Cd, Ag), electric and 

electronic technology wastes (Cu, Sn, Au, Ag, Ni, Al, Zn), wastes from X-ray films production and from 

their processing (Ag), as well as the wases from the industrial metal finishing processes (Cr, Ni, Cu, Zn, 

Au, Ag, Cd) [7-11]. These materials are usualy preocesssd by the thermal technilogies, including refining 

and smelting [11-14] and hydrometallurgical and bio-metalurgical technologies, including leaching, 

cementing, reducing agents, peeling, electro-coagulants, adsorbents, electro-dialysis, solvents 

extraction, ion exchange resins and bio-sorbents [15-18]. 

There are three important features of the silver recycling processes. First is flexibility of the applied 

recycling technologies for wastes with variable origin, sources and compositions. Second is the economy 

of recycling technologies in the terms of costs and marketability. Third is the silver toxicity and 

requirements to prevent secondary pollution by technology itself or by reactants used in silver separation. 

For these three reasons, new relevant studies are continuously carried out for improving silver recovery 

processes and finding new friendly environmentally technologies. Beside classical hydrometallurgical 

processes, like dissolution and precipitation [19-21] and solvent extraction of silver [22-24], new other 

technologies were studied for improving performances in the silver recovery and lessening the 

production costs. As examples, below are presented the recent studies concerning the silver adsorption 

from waste industrial waters on different type of low cost materials (for decreasing costs) and modified 

materials (for improving performances) [25]. Old adsorbent materials, like activated carbon [26-28] and 

natural ion-exchanging compounds (like perlite, clinoptilolite. vermiculite) modified or non-modified 

[29-32], were re-evaluated. Also, some new adsorbents based on silicate compounds have been tested 

recently [33-36]. Other research topics on silver recovery and recycling include the testing of various 

mixed adsorbents formulations based on chitosan [37, 38], the testing of bioadsorbents [39, 40] and 

synthetic polymer adsorbents [41,42], and the study of coagulation, as a method of recovering silver 

from residuals waters [43-45]. However, adsorption-desorption processes remain a large field of 

investigation, due to their selectivity for different metal ions and the variety of available materials at 

reasonable prices. At the same time, the increased interest in obtaining materials with adsorbent 

properties has grown in the last decade, due to the availability of materials with large specific surfaces, 

adequate pore distributions and with significantly increased reactivity, generated by the large number of 

active centres on the particle surface. An important class of adsorbents with multiple applications, 

coming from common sources of alumina, is manufactured under the name of low calcination 

temperature alumina products. Also, there are available numerous reviews about manufacture, 

characterization and application of this category of alumina products [46-60]. The low calcination 

temperature alumina products are the molecular species emerging during aluminium hydroxide 

dehydroxilation at temperatures lower than the last phase transitions to α-Al2O3. During dehydroxilation, 

the precursor phase, which is gibbsite, may undergo various phase transitions, arranged in one of two 

lines of successive transitions and recrystallizations:  

 

Line 1: Gibbsite χ-Chi κ-Kappa α-Alfa   Line 2: Gibbsite Boehmite γ-Gamma  δ-Delta  θ-Teta  α-Alfa 
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The precursor purity and its mineral properties control the row of transitions which has priority. In 

fact, four dynamic factors control the entire process: a) the certain processing of the gibbsite or boehmite, 

as precursors targeting a particular phase transition; b) the final temperature and rate of heating; c) the 

particles size dimension of precursor phase before the heating treatments; d) advanced grinding and 

intensive mechanical activation before or during the precursor thermal activation. All these driving 

factors and their influence on gibbsite phase transitions have been presented in our previous papers [61-

64]. Additionally, some more information about the the gibbsite phase as precursor, manufactured by 

Alum SA Tulcea Romania from Sierra Leone bauxite by Bayer modified process (under European 

Regional Development Fund through the Competitiveness Operational Program of 2014–2020), can be 

find in the papers [61-63, 65-68]. This paper purpose concerns the study of silver adsorption from pure 

silver solutions on the low calcination temperature alumina products, which have been fully described 

in the papers [61,62]. Thus, the measurement of the maximum adsorption capacity of low calcination 

temperature distinct classes of products will furnish a good data basis for selection the best silver charged 

adsorbents to be used as antimicrobial materials in particularly treatments of the waste waters Part 2 of 

this paper. 

 

2. Materials and methods 
2.1. Samples materials 

 The samples of aluminum hydroxide were collected from the last test of the new production line at 

Alum SA Tulcea, Romania, which was built up by implementation of the project “Endow the Research 

and Development Department of SC ALUM SA Tulcea with independent and efficient research facilities 

to support the economic competitiveness and business development”, project co-funded by the European 

Regional Development Fund through the Competitiveness Operational Program 2014-2020. This new 

production unit can deliver new grades of aluminum hydroxide dried, milled and classified. Some 

representative specimens, for each defined dimension particle class, were carefully selected as 

precursors for studying their thermal behaviour and possibility to find new outcome products with 

required properties as adsorbents. The samples composition and particle size distributions are presented 

in the Table 1. 

 

Table 1. Aluminum hydroxide samples. Particle size fractions and composition 

Sample GDAH-01 GDAH-02 GDAH-03 GDAH-04 GDAH-05 

Particles 

dimensions 

< 45µm=5.7% 

>150 µm=6.4% 
< 45µm 98.29%; 

< 20µm 

92.13% 

<10µm 

76.28% 

< 45µm=5.0 % 

>150=3.42% 

Al (OH)3 99.65 99.66 99.69 99.64 99.73 

Al2O3, % 65.15 65.16 60.18 65.15 65.21 

Na2O, % 0.21 0.200 0.190 0.210 0.200 

SiO2 , % 0.009 0007 0.009 0.009 0.008 

CaO % 0.035 0.041 0.038 0.039 0.0546 

Fe2O3, % 0.007 0.013 0.010 0.009 0.007 

LOI 34.62 34.62 34.61 34.62 34.58 

Umiditate 0.082 0158 0.134 0180 0.081 

 

In order to study the thermal transformations, the samples were first dried at 60°C for 24 h, then 

heated in an electric furnace (in air atmosphere) at 260°C, 300°C, 400°C and  600°C, with a heating rate 

of 5°C/min and then held for thermal stabilization 2h at the above mentioned temperature values. The 

samples were afterwards slowly cooled in the oven until room temperature. After heating  and 

stabilization, the number of samples ready for any type of tests became 25, meaning 5 sample lots, each 

for the temperature values 25, 260, 300,400 and 600°C and each for all the initial five samples GDAH-

01, GDAH-02, GDAH-03, GDAH-04 and GDAH-05, with its own particle size distribution. In all 
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experiments, there were used only common chemical analysis standard reactives, along with samples of 

low calcination temperature alumina products, manufactured in an industrial pilot plant. All analyses 

were repeated for thee times and the results were mediated. At the end of adsorption experiments, the 

recovered adsorbents main properties were measured again for monitoring the eventual damages in each 

sample quality. 

 

2.2. Silver adsorption capacity of on low calcination temperature alumina products 

Adsorptive performances of low calcination temperature alumina products were demonstrated in 

many studies by determining the influence of specific adsorption parameters (pH, sorbent dose, contact 

time, silver initial concentration etc.) on maximum adsorption capacity.  

Adsorption capacity has been determined using the equation (1): 

   

 q = (Co-Cf) = V/m                                                                    (1)                                                                                               

 

where: Co - initial concentration of Ag (1) in solution, (mg/L); Cf - residual concentration of Ag (I) from 

solution, (mg/L); V- solution volume, (L); m – adsorbent mass, (g). Efficiency of adsorption process has 

been determined using equation 2: 

  

   ƞ-100 (Co - Cf) / Co                                                       (2) 

 

where: Co-initial concentration of Ag (I) from solution, (mg/L); Cf–residual concentration of Ag (I)               

from solution, (mg/L).                                                                                                                                                                                                                                                               

To measure materials from Table 2 solutions with different concentrations of Ag (I) were prepared: 

10, 20, 40, 60, 80, 90, 100 and 120 mg/L). The adsorption capacities were determined at pH = 5, for a 

contact time of 60 min (considered optimal for achieving the ives oobjectf the initiated study) at the 

temperature values of 298 K, 308K and 318K. Thus, the samples of 0.1 g of each material from table 1 

and Table 2 were dispersed in volumes of 25 mL solution containing Ag(I) and mixed for 60 min. At 

equilibrium, the samples were filtrated and analysed for finding the residual Ag(I) concentration, and 

subsequently computing the quantities of adsorbed Ag(I) per g of each sample of low temperature 

activated alumina product. Preliminary analyses have shown that 60 min mixing time is enough for 

reaching the equilibrium, because the tested alumina products are very reactive adsorbents. 

 

2.3. Silver adsorption kinetics on low calcination temperature alumina products 

The effect of contact time and temperature are important factors in assessing the affinity of the 

adsorbent materials for Ag (I). To determine the influence of contact time and temperature on the 

adsorption capacity of the materials presented above, samples 0.1 g of each tested material were weighed 

over which 25 mL of Ag (I) solution of 10 mg/L concentration was added. The samples were stirred at 

different time intervals (15, 30, 60, 90, and 120 min) in a water bath provided with stirring and 

thermosetting at some values of the temperature (298K, 308K, and 318K). The working pH was 5. The 

value pH 5 was chosen because the selected samples are very sensitive to the pH variation, and samples 

should be compared under the same conditions. Actually, the alumina products have been introduced in 

silver nitrate solutions at pH 5, and further the pH was contlolled by adding some solution drops. All the 

residual concentrations of Ag (I) in the collected solutions were determined by atomic adsorption 

spectrometry. Knowing the concentrations of solutions in contact with the adsorbent material and the 

concentrations of the solutions after adsorption, one can calculate the evolution of the concentrations of 

Ag (I) adsorbed at each moment of the adsorption process.  

 

2.4. Analysis equipments 

All samples composition was carried out using the X-ray sequential fluorescence spectrometer 

(XRF); Thermo Fisher Scientific ARL PERFORM’X, Waltham, MA, USA), equipped with an X-ray 

https://revistadechimie.ro/
https://doi.org/10.37358/Rev


Revista de Chimie                                                                                                                                                                
https://revistadechimie.ro   

https://doi.org/10.37358/Rev.Chim.1949 

 

Rev. Chim., 73 (2), 2022, 17-32                                                                      21                                 https://doi.org/10.37358/RC.22.2.8516                                         
    

 

 

tube with a Rh anode and a Be window of 30 µm, was used for qualitative and quantitative analyses of 

the elements. The entire surface of the sample was analyzed under a dry He flow. Particle size 

distributions in the analysed samples were determined using a Malvern Panalytical Mastersizer 2000 

diffraction analyzer (Almelo, The Netherlands) in the dynamic range of 0.1 to 3000 µm. Samples were 

dispersed in water using ultrasound and mechanical stirring. The Mie scattering theory specific to the 

instrument’s software was used for the particle size distribution assessment. The morphology and 

elemental composition of the particulate material samples was characterized by scanning electron 

microscopy (SEM: Quanta FEG 250, FEI, The Netherlands) using back scattered electron detector 

(BSD) coupled with energy dispersive X ray spectroscopy (EDS: using Apollo SSD detector, EDAX 

Inc. US). The microstructure and EDS analyses were performed at about 10 mm working distance (WD) 

in low vacuum mode in order to avoid surface charging and damage of the analysed material. For some 

samples was used a Quanta Inspect F50 FEG scanning electron microscope (Thermo Fisher, Eindhoven, 

Netherland), with a resolution of 1.2 nm and an Everhart–Thornley secondary electron detector (ETD), 

which was equipped with an energy-dispersive X-ray (EDS) analyser (resolution of 133 eV at MnKα, 

Thermo Fisher Scientific, Waltham, MA, USA), were used to analyse the morphologies and the chemical 

compositions of the samples. Other details about these equipments and their use in the study of low 

calcination temperature alumina products can be found in the papers [61, 62]. Silver concentration in the 

all filtrated solutions has been determined by atomic adsorption spectrometry using a Varian SpectrAA 

280 FS instrument. Solutions pH has been determined using a Seven Compact S 210 Mettler Toledo pH-

mete. For kinetics studies at some different temperature values were used a SW23 shaking water bath, 

JULABO, Germany. 

 

3. Results and disscutions 
3.1. Maximum adsorption capacity 

Maximum adsorption capacity of the adsorbents is a very important parameter, because it helps a 

quick evaluation of the adsorption performance for any material under various common or uncommon 

circumstances. Some more papers, recently published, recommend to use Langmuir, Freundlich, 

Dubinin-Radushkevich [69,70] or Sips isotherms [71] to compute the maximum adsorption capacity 

from experimental isothermal adsorption data. However, these methods are requiring additional data, 

which can be very laborious, to overcome discrepancy between the predictions and experimental data. 

Both linear and nonlinear isotherm model have to enable, more or less, simplifications to fit experimental 

results to the model data. Since this paper purpose is to characterize a new family of adsorbents coming 

out from low temperature activated alumina products, and to find their industrial applications, the 

maximum adsorption capacity of each individual product was evaluated from experimental saturation 

curve at constant temperature 298 and 318 K.  

In the Figure 1, the saturation curves for one family of low temperature activated alumina products 

encompassing the samples GDAH-01 25, GDAH-03 25 and GDAH-04 25. Maximum adsorption 

capacity value is find by extrapolation of the two segments of each curve. The choice of samples was 

intended to illustrate the common forms of curves, specific for all the type of low temperature activated 

alumina products, manufactured at small pilot scale and characterized in our previous papers [61-64]. 

In the Table 2 are given the values of maximum capacity of silver adsorption at equilibrium at 25ºC 

for all samples of low temperature activated alumina products under survey in this paper. There are five 

groups of samples which differ by the temperature of calcination and in each group five samples which 

differ by particle size dimention. The values of maximum capacity of adsoption have to be evaluated 

with regard to all changes induced by the four dynamic factors which control all the low temperature 

activated alumina products properties, mainly, the mineral phases convertions extent, as well a71s the 

physical and technical properties associated with these materials [61-63]. These dynamic factors are: a) 

initial gibbsite (as raw material and phase transitions precursor) preliminary procesing; b) calcination 

temperature and rate of heating; c) particles size dimension of gibbsite, before the heating treatments, 

advanced grinding and intensive mechanical activation of gibbsite;  
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Figure 1. Saturation curves of the low temperature activated alumina products  

at 25ºC. Products family GDAH-01 25, GDAH-03 25 and GDAH-04 25 

 

Table 2. Maximum silver adsorption capacity on low temperature activated  

alumina products at 25ºC, experimental values 
Samples Particle sizes  Maximum silver 

adsorption capacity, 

mg/g 

Samples Particle sizes  Maximum silver 

adsorption capacity, 

mg/g 

GDAH-01 25 0-150 µm 4.90 GDAH-04 300 0-10 µm 10.18 

GDAH-02 25 0-45 µm 5.90 GDAH-05 300 45-150 µm 7.69 

GDAH-03 25 0-20 µm 6.70 GDAH-01 400 0-150 µm 5.09 

GDAH-04 25 0-10 µm 6.20   GDAH-02 400 0-45 µm 6.43 

GDAH-05 25 45-150 µm 5.20 GDAH-03 400 0-20 µm 8.12 

GDAH-01 260 0-150 µm 5.02 GDAH-04 400 0-10 µm 9.67  

GDAH-02 260 0-45 µm 6.73 GDAH-05 400 45-150 µm 7.02 

GDAH-03 260 0-20 µm 8.78 GDAH-01 600 0-150 µm 4.76 

GDAH-04 260 0-10 µm 9.98 GDAH-02 600 0-45 µm 6.01 

GDAH-05 260 45-150 µm 7.32 GDAH-03 600 0-20 µm 7.98 

GDAH-01 300 0-150 µm 5.29   GDAH-04 600 0-10 µm 9.21 

GDAH-02 300 0-45 µm 6.92 GDAH-05 600 45-150 µm 6.89 

GDAH-03 300 0-20 µm 9.02      

 

Also, these dynamic factors contribution explain the diversity and vaiation in the values of maximum 

silver adsorption capacity from Table 2. The first group of samples GDAH-01 25 - GDAH-05 25 

represents the raw material parted in five fractions, on the basis of particle size dimention. It was mention 

in the paper [66] that the gibbsite is produced at Vimetco Alum SA Tulcea, Romania under special 

conditions required by the chemical and mineral compozition of processed bauxite. Consequently, the 

gibbsite product bears the imprints of raw bauxite, and might be considered in this paper as a preliminary 

processed raw material, mainly when is compared with other gibbsite grades coming out from alumina 

Bayer processing with other bauxite source [66]. All samples are containing gibbsite with large content 

of amorphous phase. The second group GDAH-01 260 - GDAH-05 260 is coming from samples calcined 

under special conditions at 260ºC, which have lost around 3-4% water. The main phase remains the 

gibbsite 33-62%, accompanied by 2-10% boehmite and 45-60% amorphous phase.The third group of 

samples GDAH-01 300 - GDAH-05 300 have lost around 20% water and undergoes great changes in 

samples mineral composition: gibbsite 23-58% and 10-14% boehmite, associated with 0-6% gama-

alumina and 54-60% amorphous phase. The fourth group of samples GDAH-01 400 - GDAH-05 400 

did lost around 28% of water and the gibbsite content dopped to 0.1-3.1%. At the same time the content 

of boehmite raises to 5-13%. Also, significant increase were noticed in gama alumina content, 10-16%, 

as well as in amorphous phase, 73-81%. In the last fifth group, the GDAH-01 600 - GDAH-05 600, all 

samples exhibit a total change in mineral compozition, with 10-29 % gama alumina and amorphous 
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phase. The above significant changes in the mineral phases composition and in amorphisation degree of 

the recrystallized phases are the straight effcct and contribution of the second dynamic factor, the 

calcination temperature and rate of heating. These data sustain the large variation in maximum silver 

absortion capacities from Table 2. The third dynamic factor, the particle size dimentions before heating 

treatments, acts with the same intensity as calcination temperature and rate of heating on values of the 

maximum absorption capacity parameter (Table 2). But, for ilustrating the intensity of this factor, the 

significant data have been selected from Table 2 and presented in a more adequte graphical 

configutration in the Figure 2. According to this new arrangement there are five groups of bars, each one 

standing for stanging for each temperature the aluminum hydroxide was activated. Each group of bars 

holds in une bar for each particle size dimension fraction. Thus, the Figure 2 displays very clearly a 

global image of maximum silver adsorption capacities for all the representative samples of low 

temperature activated alumina products.  

   

 
Figure 2. Maximum Ag(I) adsorption capacity on the low temperature activated alumina at 25ºC 

 

This image highlightes the distinct impact of particle size dimension on the values of the parameter 

maximum silver adsorption capacity on low temperature activated alumina products. Also, this image 

points up the higher values of silver capacity adsorption for the smaller particle size fractions, as effect 

of the above presented dynamic factor impact. 

 

3.2. Kinetics of silver adsorption on low temperature activated alumina products 

Kinetic studies usually help to understand the mechanism of adsorption process and its chemical side 

and possible reactions, as well as the reaction rate and the mass transfer coefficient. Moreover, the kinetic 

data knowledge opens the paths to find out the optimal conditions necessary for improving the adsorption 

process rate and yield. In order to ascribe a general expression for describing the sorption kinetics of a 

ionic or non-ionic compound on different solid adsorbents, it is necessary to perform some preliminary 

tests for fitting the experimental data [72]. 

In this paper the selected samples of low temperature activated alumina products were GDAH-01 

25, GDAH-04 25, GDAH-04 300, and GDAH-04 400. The reason of this selection stands in the samples 

processing ways to be converted from the raw precursor GDAH-01 25 (aluminum hydroxide, fraction 

0-150 µm) into the other adsorbents. 
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Sample GDAH-04 25 (aluminum hydroxide fraction 0-20 µm) differs from sample GDAH-01 25 by 

its particles size dimensions. Also, the samples GDAH-04 300 and GDAH-04 400 differ from the other 

two samples by their thermal treatments, which bring about large changes in specific surface and pores 

size distribution. Therefore, each sample is a distinct product from a family of low temperature activated 

alumina products.  

Additionally, all thermal and mechanical (milling and classifying) treatments applied on all 

individual sample sums up all types of dynamic impact during low temperature alumina activation 

process. 

After preliminary tests, the linear equations appear to provide the best fit of experimental data. Most 

often used linear equations, which describe the adsorption process kinetics are: 

- Pseudo-first order model (Lagergren model) [73]: 

 

 ln(qe- qt) = lnqe - k1t                                                                    (3) 

 

where: qe - equilibrium adsorption capacity, (mg/g): qt - adsorption capacity at time t, (mg/g)L k1 - rate 

constant for pseudo-first order (1/min): t- contact time, (min). 

In this paper the selected samples of low temperature activated alumina products were GDAH-01 

25, GDAH-04 25, GDAH-04 300, and GDAH-04 400. The reason of this selection stands in the samples 

processing ways to be converted from the raw precursor GDAH-01 25 (aluminum hydroxide, fraction 

0-150 µm) into the other adsorbents.  

- Pseudo-second order model (Ho și McKay model) [74]:   

 

1/qt = 1/(qe)2+ 1/qe                                                      (4) 

 

where: qe - equilibrium adsorption capacity, (mg/g): qt - adsorption capacity at time t, (mg/g): k2 - rate 

constant for pseudo-second order, (g/mg∙min): t - contact time, (min). 

 

When the experimental data are modelled using pseudo-first-order model, kinetic parameters (k1–

rate constant and calculated adsorption capacity - qe, calc) were evaluated from linear dependence 

between ln(qe–qt) and t. By modelling the acquired experimental data with pseudo-second-order model, 

the associated kinetic parameters (rate constant k2, and calculated adsorption capacity - qe, calc.) were 

determined from linear dependence between t/qt and t. The adsorption kinetic of Ag(I) has been studied 

for all four selected adsorbent samples at three different temperature values (298, 308, and 318 K).   

Kinetic isotherms (pseudo-first-order and pseudo-second-order) are visualized in Figures 3 to 6. 

Based on experimental data, presented in Figures 3 to 6, the pseudo second order kinetic model was 

ascertain as valid model and the values of adsorption capacity qexp, as well as the value of rate constant 

K2 were computed and presented in the Table 3 at 298K and 318K. 

Based on experimental data, presented in Figures 3 to 6, the pseudo second order kinetic model was 

ascertain as valid model and the values of adsorption capacity qexp, as well as the value of rate constant 

K2 were computed and presented in the Table 3 at 298K and 31 8K.Also, in Figure 7 are presented 

comparatively the kinetic parameters obtained by modeling experimental data with pseudo-second-order 

model.at two different tempereture values. From both data presented in Figures 3 to 6 and in Table 3, it 

can be observed that the experimental data are better described by pseudo-second order model. Such 

observation is in concordance with the regression coefficient obtained value (which is near a unity). 

Also, the calculated values for maximum adsorption capacity are similar with those coming from 

experimental data. Moreover, the data from Figure 7 are reflecting the impact of the dynamic factors, 

which control all the physical and technical properties of chosen adsorbents, including also the 

adsorption rate of (Ag 1) on the same materials. 
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Table 3. Kinetic parameters of the adsorption process, according the 

 pseudo-second-order kinetic model at 298 and 318 K 

 
 

 
Figure 3. Kinetic models applied for silver adsorption process on the sample GDAH-01 25 

 

 
Figure 4. Kinetic models applied for silver adsorption process on the sample GDAH-04 25 

 

Thus, the rate of (Ag 1) adsorption is dependent on both temperature and particles size dimension of 

the adsorbents, as results from Figure 7A. At the same time, the rate of (Ag 1) adsorption is dependent 

on temperature variation, according to the results from Figure 7 B, which predict significant increase 

with temperature in the rate constant K2. 

 

https://revistadechimie.ro/
https://doi.org/10.37358/Rev


Revista de Chimie                                                                                                                                                                
https://revistadechimie.ro   

https://doi.org/10.37358/Rev.Chim.1949 

 

Rev. Chim., 73 (2), 2022, 17-32                                                                      26                                 https://doi.org/10.37358/RC.22.2.8516                                         
    

 

 

 
Figure 5. Kinetic models applied for silver adsorption process on the sample GDAH-04 300 

 

 
Figure 6. Kinetic models applied for silver adsorption process on the sample GDAH 04 400 

     

 
Figure 7. Silver adsorption model pseudo second order. Kinetic parameters qexp.  

and K2 constant at 298 and 318 K 

 

4. Conclusions 
This paper is the fifth from row of published research works, regarding the low temperature activated 

alumina products coming out from the same precursor, the aluminum hydroxide dried, milled and 

classified manufactured at Vimetco Alum SA Tulcea, Romania after implementation of the project 

“Endow the Research and Development Department of SC ALUM SA Tulcea with independent and 
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efficient research facilities to support the economic competitiveness and business development”, project 

co-funded by the European Regional Development Fund through the Competitiveness Operational 

Program 2014–2020. The previous papers described the principles of low temperature alumina activation 

and the samples preparation, as well as the products chemical structure and mineralogy, and also their 

industrial properties. This paper discloses the results of researches about silver adsorption capacity of 

all the low temperature activated alumina samples from Table 2 and also, the results of investigation the 

silver adsorption kinetics on some mindfully selected samples. Thus, only four samples, reasonably 

accepted as representative for the entire lot of samples, were used for the study of kinetics mechanism 

and data fitting to the adequate kinetic equations. Confident data validate the pseudo second order kinetic 

model for the entire activation process, independently of samples heating temperature and particle size 

dimension. 
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