Gender Differences in the Association of Ferritin and 25-hydroxyvitamin D

ANCA PANTEA STOIAN, CORNELIA BALA, ADRIANA RUSU, ANDRA SUCEVEANU, DUMITRU CRISTINEL BADIU, CORNELIA NITPIR, GEORGIANA DIU, CRISTINA BICA, DAN NICOLAE PADURARU, CRISTIAN SERAFINCEANU

1Carol Davila, University of Medicine and Pharmacy, Department of Diabetes and Nutrition, 37 Dionisie Lupu, 030167, Bucharest, Romania
2Iuliu Hatieganu, University of Medicine and Pharmacy, Department of Diabetes and Nutrition, 4 Louis Pasteur, 400349, Cluj Napoca, Romania
3Ovidius University, Faculty of Medicine, 124 Mamaia Blvd., 900527, Constanta, Romania
4Carol Davila, University of Medicine and Pharmacy, 37 Dionisie Lupu, 030167, Bucharest, Romania
5Prof. Dr. Nicolae Paulescu, National Institute of Diabetes, Nutrition and Metabolic Diseases, Bucharest, Romania
6Bagdasar Arseni, Clinical Emergency Hospital, Department of Surgery, 12 Berceni Road, 041915, Bucharest, Romania

This study aimed to investigate gender differences in the relationship between ferritin levels and 25(OH) vitamin D deficiency in overweight persons and whether this relationship is mediated by total and visceral adiposity and fatty liver index (FLI), a marker of non-alcoholic fatty liver disease. Our study was a retrospective one in which we were collecting data from 92 patients seen in an outpatient clinical center between January 2011 and October 2017. Patients were classified with vitamin D deficiency if 25(OH) vitamin D levels were < 20.0 ng/mL. Univariate linear regression analysis assessed the association between ferritin levels and 25(OH) vitamin D deficiency, with and without correction for age, body composition (total fat mass and visceral fat mass) and FLI. In men, a statistically significant positive association between 25(OH) vitamin D deficiency and ferritin levels were found ($\beta = 0.424, p=0.008$) in univariate and model adjusted for age. After adjustment for age and total fat mass and for age and visceral fat mass the association became non-significant in men ($\beta = 0.327, p=0.067$ and $\beta = 0.295, p=0.106$, respectively) and maintained non-significant after further adjustment for FLI ($p <0.05$). In women, ferritin level was negatively associated with 25(OH) vitamin deficiency in the model adjusted for age, visceral fat mass and FLI ($\beta =-0.335, p=0.026$). In this study, we showed that serum ferritin levels were negatively associated with the presence of 25(OH) vitamin D deficiency in women and this association was independent of age, body composition and FLI. No association was observed in men.

Keywords: gender differences; vitamin D; ferritin; body composition; fatty liver index

Traditionally vitamin D is associated with bone metabolism and calcium homeostasis, and its deficiency is linked to rickets in children and also osteoporosis in adults [1]. New roles have been attributed to vitamin D, and its pleiotropic effects have been shown to be attributable to immunomodulatory qualities of vitamin D receptor agonists [2]. Thus, it is not surprising that its deficiency has been linked to various conditions that have inflammation as a pathogenic mechanism, such as autoimmune diseases, cardiovascular diseases, insulin resistance and diabetes mellitus [2-4]. Accordingly, vitamin D levels are regulated by several factors, including UV exposure, dietary intake, gender and obesity [5,6].

Iron is an essential trace element for most of the physiologic processes, with a critical role in energy homeostasis, from oxygen transport to energy metabolism, but also in DNA replication and transcriptional regulation [8-10]. Due to its involvement in hepatic and adipose tissue insulin resistance and oxidative stress, iron also interferes with the primary pathogenetic mechanisms of obesity-related diseases, including non-alcoholic fatty liver disease (NAFLD). Ferritin acts as the primary form of storage of iron in most cells, and small quantities are released in circulation reflecting body iron stores. Serum ferritin levels are regulated by hepcidin, which is the chief regulator of iron homeostasis [11]. Hepatocytes mainly produce hepcidin, but small quantities are also provided by adipose tissue, macrophages and pancreatic cells [12-15], and its production appears to be influenced by oestrogens by regulation of ferroportin expression [16].

Researchers on the relation between ferritin and vitamin D levels are limited, and results are conflicting, with studies showing either a positive association [18] or no association [19,20]. Furthermore, insufficient data are available on the gender influence on this association, with one study...
showing a positive correlation in women and but not in men [21] and a second one showing an inverse association of ferritin levels with vitamin D levels in men and a positive association in premenopausal women [22].

Our study proposed to investigate gender differences in the relationship between ferritin levels and 25(OH) vitamin D deficiency in overweight persons and whether this relationship is mediated by total and visceral adiposity and fatty liver index (FLI), a marker of NAFLD.

Experimental part

Materials and methods

Study participants

This was a retrospective study in which were collected data from charts of patients seen in an outpatient clinical centre in Bucharest, Romania between January 2011 and October 2017. Were included adults below 79 years of age, with overweight or obesity as defined by a body mass index (BMI) ≥ 25 kg/m², with 25(OH) vitamin D levels available and which had not undergone a nutritional intervention in the previous 12 months. Patients were excluded if they had parathyroid pathology, had used vitamin D supplements in the last six months, were using hepatoprotective drugs, had a previous diagnosis of osteoporosis, gastrointestinal or autoimmune diseases, kidney or hepatic failure. Also, were excluded pregnant or lactating women and patients of non-Caucasian race.

The research was conducted following Good Clinical Practice Guidelines and the Declaration of Helsinki, and the Institutional Review Board approved the study protocol. Due to retrospective design, according to local regulations, the signature of the informed consent was not required [23].

Data collected

Detailed medical history, age, gender, results of anthropometrical measurements (weight, height, waist circumference), clinical assessments (blood pressure) and laboratory investigations (blood pressure, triglycerides, total and HDL-cholesterol, ferritin, 25(OH) vitamin D, total calcium, magnesium, haemoglobin, haematocrit, mean corpuscular volume, iron and full iron binding capacity) were collected. According to local procedures, height and weight were measured in the morning, in fasting condition, with patients wearing light clothes and no shoes. BMI was calculated as measured in the morning, in fasting condition, with patients wearing light clothes and no shoes. BMI was calculated as

\[\text{BMI} = \frac{\text{weight (kg)}}{\text{height}^2 (m)} \]

The waist circumference was measured in standing position at a half distance between the lowest rib and the iliac crest using a soft tape. Blood pressure was measured in sitting position after 5 minutes of rest. Visceral fat mass (VFM) and body fat mass (BFM) were measured by bioelectric impedance, using Omron body composition monitor (Omron Healthcare Europe BV). Diabetes was diagnosed if fasting plasma glucose ≥126 mg/dL on two different occasions and/or HbA1c was ≥ 6.5% or patients had a previous diagnosis of diabetes or were following therapy with hypoglycaemic drugs. Hypertension was defined as a systolic blood pressure of ≥140 mmHg, a diastolic blood pressure ≥ 90 mmHg and/or use of antihypertensive therapy. Fatty liver index (FLI) [24] assessing liver steatosis was calculated with the following formula:

\[\text{FLI} = \left(\frac{\text{fat} \times \text{loge} (\text{TG}) + 0.138 \times \text{BMI} + 0.718 \times \text{loge (GGT)} + 0.053 \times \text{waist circumference} - 15.745}{1 + e^{0.953 \times \text{loge (TG)} + 0.053 \times \text{waist circumference} - 15.745}} \right) \times 100 \]

Laboratory assessments

Laboratory investigations on which data were collected included: fasting blood glucose, glycated haemoglobin (HbA1c), triglycerides, total cholesterol, HDL-cholesterol, ferritin, 25(OH) vitamin D, total calcium, magnesium, haemoglobin, haematocrit, mean corpuscular volume, iron and full iron binding capacity. As per institutional procedures, all blood samples were collected in the morning, in fasting condition and assessed in an institutional laboratory in the day of collection. HbA1c was determined using ion-exchange chromatography. Fasting plasma glucose, triglycerides, total and HDL-cholesterol were determined by routine enzymatic methods. LDL-cholesterol was calculated using the Friedewald formula [25]:

\[\text{LDL}-\text{cholesterol} = \text{total cholesterol} - \text{HDL-cholesterol} - \frac{\text{triglycerides}}{5} \]

Haemoglobin, haematocrit and mean corpuscular volume were assessed using flow cytometry methods and iron and total iron binding capacity (TIBC) by colourimetric methods. Serum ferritin and 25(OH) vitamin D levels were measured using an electrochemiluminescence method. Patients were classified as having vitamin D deficiency if 25(OH) vitamin D levels were <20.0 ng/mL [23].

Statistical analysis

Statistical analysis was performed using SPSS-PC 20.0 (SPSS Inc., Chicago, IL, USA). Kolmogorov-Smirnov tests, skewness and kurtosis, were used to evaluate the distribution of all quantitative variables. Data are presented as number (percentage, %) for categorical variables and mean ± standard deviation (SD) or median (quartile 1; quartile 3) for continuous variables. Comparing variables between groups with and without 25(OH) vitamin D deficiency and gender were performed by Student t-test, Mann-Whitney U test and chi-square test. Univariate linear regression analysis assessed the association between ferritin levels and 25(OH) vitamin D deficiency, with and without correction for age, body composition (total fat mass and visceral fat mass) and FLI. Because ferritin had an non-Gaussian distribution, for the inclusion in the regression analysis as a dependent variable, it was logarithmically transformed. The presence of collinearity among predictors was tested in all regression models employing more than one predictor. Due to collinearity issues, total fat mass and visceral fat mass were included in separate regression models.

Results and discussions

Data of 148 patients fulfilling the inclusion criteria and without exclusion criteria admitted between January 2011 and October 2017 were collected. Of these, 56 had no ferritin evaluation and were excluded from the analysis. Thus, here we present data from 92 patients with overweight or obesity and with age ranging between 20 and 69 years. The characteristics of the analysed population are presented in table 1. BMI ranged between 25.5 kg/m² and 56.0 kg/m², with a mean value of 32.8 kg/m². Of the patients analysed, 21 (22.8%) had arterial hypertension, and 9 (9.8%) had type 2 diabetes. Median levels of ferritin were 82.5 µg/L, and median 25(OH) vitamin D levels were 22.5 ng/mL. Mean haemoglobin levels were 14.2 mg/dL, mean iron levels 16.9 µg/L and TIBC 66.2 µg/dL. According to 25(OH) vitamin D levels, 35 patients (38.0% of the sample included in the analysis) had 25(OH) vitamin D deficiency. No statistically significant difference between groups with and without 25(OH) vitamin D deficiency was observed for any parameters analysed. Median ferritin levels were 100.0 µg/L in those with 25(OH) vitamin D deficiency and 68.4 µg/L in those without (p=0.088). 54 patients, representing 58.7%, were women. Compared to women, men had significantly higher levels of ferritin: 174.5 µg/L vs 84.1 µg/L, p <0.001. Also, weight (p <0.001), BMI (p = 0.048), waist circumference (p = 0.002), visceral fat mass (p <0.001), diastolic blood pressure (p=0.039), fasting plasma glucose (p=0.018),
haemoglobin (p <0.001) and haematocrit (p <0.001) were higher in men than in women. BMI was 34.3 kg/m² in men and 31.8 kg/m² in women; visceral fat mass was 17.4 kg in men and 9.1 kg in women. FLI score was also significantly higher in men than in women: 88.4 vs 63.2, p <0.001. Total fat mass was higher in women than in men (43.5 kg vs 36.0 kg, p <0.001). No difference was observed in the 25(OH)vitamin D levels and the frequency of 25(OH)vitamin D deficiency between the genders. The frequency of 25(OH)vitamin D deficiency, was 39.5% in men and 37% in women (p=0.813, table 2).

In men, serum ferritin levels were significantly higher in those with 25(OH)vitamin D deficiency compared to those without 261.7 (159.5; 415.0) vs 146.8 (63.7; 192.8), p=0.006. In women, the difference observed between those with and without 25(OH)vitamin D deficiency was not statistically significant: 56.6 (25.3; 112.1) in those with 25(OH)vitamin D deficiency and 46.7 (27.4; 96.9) in those without 25(OH)vitamin D deficiency, p=0.788.

A univariate linear regression analysis was performed with Log ferritin as dependent variable and presence of 25(OH)vitamin D deficiency as an independent variable. Statistically significant positive association between 25(OH)vitamin D deficiency and ferritin levels was found only in men (β=0.424, p=0.008) for this model. The adjustment for age did not change the significance of the association. After adjustment for age and total fat mass (Model 1) and for age and visceral fat mass (Model 2) the association between ferritin and 25(OH)vitamin D deficiency become non-significant in men (β=0.327, p=0.067 and β=0.295, p=0.106, respectively) and maintained non-significant after further adjustment for FLI (p <0.05). In women, no association was observed neither in the unadjusted model nor after the adjustment for age and total fat mass or age and visceral fat mass. However, in women, Log ferritin level was negatively associated with 25(OH)vitamin D deficiency in the model adjusted for age, visceral fat mass and FLI (β=-0.335, p=0.026, table 3).

For all adjusted models Variance Inflation Factor was <10 and correlation coefficients <0.80, showing no multicollinearity in the data.

In this retrospective research, we evaluated the gender differences in the relationship between ferritin levels and 25(OH)vitamin D deficiency in overweight men and women and whether body composition and FLI mediated...
this relationship. After adjustment for age, body composition parameters and FLI score, serum ferritin levels were negatively associated with the presence of 25(OH) vitamin D deficiency in women; no association was observed in men.

Data on the gender differences in the relationship between ferritin levels and vitamin D levels are limited. We were able to identify only two publications investigating these differences and both emerged from researchers performed in Korean populations [21,22] and reported results are contradictory. In an analysis of data of 695 persons Jeong et al. [21] reported no correlation between ferritin and 25(OH) vitamin D levels in men and a positive relation between ferritin and 25(OH) vitamin D levels in women, with higher ferritin levels in those with higher vitamin D levels [21]. The second study, enrolling participants from the 2012 Korean National Health and Nutrition Examination Survey (KNHANES) showed an inverse association between ferritin and 25(OH) vitamin D levels in men and a positive association in premenopausal women, with lower ferritin levels in those with 25(OH) vitamin D deficiency and insufficiency as compared

Table 2
CLINICAL CHARACTERISTICS OF PATIENTS ENROLLED ACCORDING TO THEIR GENDER

<table>
<thead>
<tr>
<th></th>
<th>Men N=58</th>
<th>Women N=54</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age, years</td>
<td>42.5±15.7</td>
<td>42.2±11.8</td>
<td>0.914</td>
</tr>
<tr>
<td>Weight, kg</td>
<td>110.1±17.1</td>
<td>97.3±19.9</td>
<td><0.001</td>
</tr>
<tr>
<td>BMI, kg/m²</td>
<td>34.3±3.3</td>
<td>31.8±6.5</td>
<td>0.048</td>
</tr>
<tr>
<td>Waist circumference, cm</td>
<td>112.2±11.3</td>
<td>102.9±15.2</td>
<td>0.002</td>
</tr>
<tr>
<td>Total fat mass, kg</td>
<td>36.0±5.9</td>
<td>43.5±6.5</td>
<td><0.001</td>
</tr>
<tr>
<td>Fat-free mass, kg</td>
<td>28.8±3.9</td>
<td>24.4±2.8</td>
<td><0.001</td>
</tr>
<tr>
<td>Visceral fat mass, kg</td>
<td>17.4±5.4</td>
<td>9.1±3.9</td>
<td><0.001</td>
</tr>
<tr>
<td>SBP, mmHg</td>
<td>128.7±14.4</td>
<td>122.8±21.3</td>
<td>0.144</td>
</tr>
<tr>
<td>DBP, mmHg</td>
<td>80.3±9.5</td>
<td>74.5±14.9</td>
<td>0.039</td>
</tr>
<tr>
<td>FPG, mg/dl</td>
<td>97.0±60.0</td>
<td>107.0±60.0</td>
<td>0.188</td>
</tr>
<tr>
<td>HbA1c, %</td>
<td>5.5 (5.3, 5.7)</td>
<td>5.5 (5.2, 5.7)</td>
<td>0.383</td>
</tr>
<tr>
<td>Total cholesterol, mg/dl</td>
<td>208.0±38.0</td>
<td>207.2±43.4</td>
<td>0.977</td>
</tr>
<tr>
<td>LDL-cholesterol, mg/dl</td>
<td>42.2±14.0</td>
<td>51.6±15.2</td>
<td>0.007</td>
</tr>
<tr>
<td>Triglycerides, mg/dl</td>
<td>136.3±55.3</td>
<td>133.0±57.5</td>
<td>0.099</td>
</tr>
<tr>
<td>Hb, g/dl</td>
<td>11 (10.3, 11.3)</td>
<td>11 (10.3, 11.1)</td>
<td>0.241</td>
</tr>
<tr>
<td>Diabetes type 2, %</td>
<td>5 (13.2%)</td>
<td>4 (7.4%)</td>
<td>0.361</td>
</tr>
<tr>
<td>Total calcium, mg/dl</td>
<td>9.4 (9.2, 9.6)</td>
<td>9.3 (9.1, 9.3)</td>
<td>0.100</td>
</tr>
<tr>
<td>Magnesium, mg/dl</td>
<td>2.0 (1.9, 2.1)</td>
<td>2.0 (1.9, 2.1)</td>
<td>0.248</td>
</tr>
<tr>
<td>Haemoglobin, g/dl</td>
<td>15.4±0.8</td>
<td>13.4±1.2</td>
<td><0.001</td>
</tr>
<tr>
<td>Haematocrit, %</td>
<td>46.6±2.7</td>
<td>41.6±3.2</td>
<td><0.001</td>
</tr>
<tr>
<td>MCV, fl</td>
<td>92.3±88.8</td>
<td>89.7±86.4</td>
<td>0.119</td>
</tr>
<tr>
<td>Iron, g/dl</td>
<td>18.6 (15.5, 21.6)</td>
<td>15.0 (12.4, 23.2)</td>
<td>0.420</td>
</tr>
<tr>
<td>HbA1c, %</td>
<td>5.3 (61.8, 88.0)</td>
<td>62.4 (57.5, 66.9)</td>
<td>0.007</td>
</tr>
<tr>
<td>Ferritin, g/l</td>
<td>174.5 (44.3, 251.7)</td>
<td>48.1 (27.4, 96.9)</td>
<td><0.001</td>
</tr>
<tr>
<td>FLI</td>
<td>8.4±11.5</td>
<td>63.2±26.9</td>
<td><0.001</td>
</tr>
<tr>
<td>25(OH) vitamin D deficiency; n (%)</td>
<td>15 (39.5%)</td>
<td>20 (57.0%)</td>
<td>0.813</td>
</tr>
</tbody>
</table>

BMI = body mass index; SBP = systolic blood pressure; DBP = diastolic blood pressure; FPG = fasting plasma glucose; HbA1c = glycated haemoglobin; Hb = high blood pressure; MCV = mean corpuscular volume; TIBC = total iron binding capacity; FLI = fatty liver index

Table 3
ASSOCIATION OF SERUM FERRITIN LEVELS WITH 25(OH)VITAMIN D DEFICIENCY BY GENDER

<table>
<thead>
<tr>
<th></th>
<th>Men β (p-value)</th>
<th>Women β (p-value)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unadjusted model</td>
<td>0.424 (0.008)</td>
<td>0.023 (0.368)</td>
</tr>
<tr>
<td>Model 1</td>
<td>0.345 (0.032)</td>
<td>0.039 (0.708)</td>
</tr>
<tr>
<td>Model 2</td>
<td>0.327 (0.067)</td>
<td>0.130 (0.419)</td>
</tr>
<tr>
<td>Model 3</td>
<td>0.295 (0.106)</td>
<td>0.097 (0.495)</td>
</tr>
<tr>
<td>Model 4</td>
<td>0.127 (0.341)</td>
<td>-0.060 (0.833)</td>
</tr>
<tr>
<td>Model 5</td>
<td>0.135 (0.318)</td>
<td>-0.035 (0.826)</td>
</tr>
</tbody>
</table>

Unadjusted model included only ferritin as dependent variable and 25(OH) vitamin D deficiency as predictor. Normal 25(OH) vitamin D levels were used as reference. Model 1: adjusted for age, Model 2: adjusted for age and total fat mass, Model 3: adjusted for age and visceral fat mass, Model 5: adjusted for age, total fat mass and fatty liver index, Model 5: adjusted for age, visceral fat mass and fatty liver index
to those with normal levels of this vitamin [22]. Our results are in line with the former study with regards to lack of relationship in men; we also observed similar results to the latter study in women, showing that in women the presence of 25(OH) vitamin D deficiency was associated with lower serum ferritin levels[26]. The differences observed in the direction of the association among the studies may be due to the variables used for the adjustment - only age in the article of Jeong at al. [21] (positive association also seen in our results when the correction for made just for age) and multiple parameters, some of which are also included in the FLI score we used in the article of Seong et al. [22].

The observed gender differences in the associations may be due to the oestrogen and testosterone levels which have been associated with both ferritin and vitamin D [5,16]. Pregnancy and ovulation, conditions in which oestrogen production increases, were shown to be associated with higher 25(OH) vitamin D levels [27,28]. Vitamin D stimulates 17β-oestradiol synthesis, consequent vitamin D receptors expression and thus oestrogen signalling [29]. In men vitamin D metabolising enzymes (CYP2R1, CYP27B1, and CYP24A1) and the vitamin D receptors are expressed in the male reproductive system, including Leydig cells, thus suggesting a link between sex steroid productions and vitamin D [30]. Oestrogen have recently emerged as factors involved in iron metabolisms. In a cohort from 1990-2000 NHANES, it was shown that hormonal replacement therapy was associated with lower ferritin levels (β = -34.13, p=0.0002), independent of other potential confounders such as breakthrough bleeding and hysterectomy [31]. The link hypothesised is the influence of oestrogens on the hepcidin synthesis, the primary regulator of iron homeostasis [32]. In men, ferritin levels were positively associated with the presence of 25(OH) vitamin D deficiency in the unadjusted model. After adjustment for total and visceral fat mass the association lost its statistical significance, suggesting that body composition mediated the relationship. Obesity has been shown to be influenced both vitamin D and ferritin levels [21,33,34]. A meta-analysis including 34 cross-sectional studies showed a significant but weak correlation between BMI and 25(OH) vitamin D levels, with a 4% reduction in 25(OH) vitamin D with each 10% increase in BMI [6]. Among conditions hypothesised in the association between obesity and vitamin D levels are 25(OH) vitamin D sequestration in the adipose tissue [35] and volumetric dilution of vitamin D [36]. Also, obesity is a state of subclinical chronic inflammation associated with increased production of pro-inflammatory cytokines. In this context of chronic inflammation vitamin D may act as an acute phase reactant and with consequent decreased circulating levels of 25(OH) vitamin D [33]. Visceral and subcutaneous adipose tissue has also been associated with ferritin levels [37] and, as both adiposity and increased hepatic iron stores have been linked with states of insulin resistance and increased fasting insulin and glucose levels, one of the hypothesised mechanisms is increased insulin resistance [38]. These mechanisms may explain our results observed in men.

In women, we found that the association between ferritin and 25(OH) vitamin D was not mediated by the total or visceral adiposity. After adjustment for FLI score, the association become statistically significant with lower ferritin levels in those with vitamin D deficiency. Previously it was showed that one-third of the patients with NAFLD, the hepatic expression of metabolic syndrome, have higher ferritin levels, with hepatic iron deposition [11]. Also, it was showed that iron stores were associated with higher levels of sex hormone binding globulin and lower testosterone levels in men [39] and women with PCOS [40]. We did not assess testosterone and oestrogen levels in our group of patients. Thus we can only speculate that the potential causes of our observations just in women may be represented by the endocrinological effect of iron stores in NAFLD, which were linked to sex binding globulin hormones level [41] and with consecutive lower availability of oestrogen levels [40,42]. Additionally, while in men obesity was associated with lower testosterone levels, in women obesity was associated with lower oestrogen levels in fertile women and higher oestrogen levels in postmenopausal women [43-45].

Our research has several limitations that should be discussed [46,47]. First, due to its retrospective design, we cannot evaluate the causality - we cannot assess whether 25(OH) vitamin D deficiency causes lower ferritin levels of vice versa. Secondly, we enrolled a small sample size of overweight and obese patients; thus, our findings are limited to this population. Although our study has these limitations, this is the first reported study assessing gender differences in the relationship between ferritin and vitamin D in a Caucasian population.

In conclusion, in this study, we showed that serum ferritin levels were negatively associated with the presence of 25(OH) vitamin D deficiency in women and this association was independent of age, body composition and FLI. No association was observed in men. Further studies on larger samples, also evaluating oestrogen and testosterone levels are warranted to confirm our findings.

References
14. BEKKRI S., GUAL P., ANTY R., et al., Increased adipose tissue expression of hepcidin in severe obesity is independent from diabetes and NASH. Gastroenterology, 2006;131:788H796.

33. FREEMAN E.W., SAMMEL M.D., LIN H., et al., Obesity and reproductive hormone levels in the transition to menopause, Menopause, 2010;17:718H726.

Manuscript received: 6.09.2017