Lung Delayed Hypersensitivity
A case with particular features

MIHAELA PRODEA1, EUGEN RADU BOIA1, RALUCA AMALIA CEAUSU*, COSMIN LIBRIMIR1, GHEORGHE IOVANESCU1, OVIDIU ALEXANDRU MEDERLE2
1Victor Babes University of Medicine and Pharmacy, Department of ENT, 2 Eftimie Murgu Sq., 300041, Timisoara, Romania
2Victor Babes University of Medicine and Pharmacy, Department of Histology, Angiogenesis Research Center Timisoara, 2 Eftimie Murgu Sq., 300041, Timisoara, Romania
3Victor Babes University of Medicine and Pharmacy, Department of Surgery, 2 Eftimie Murgu Sq., 300041, Timisoara, Romania

*email: ra.ceausu@umft.ro All authors contributed equally to this work.

Letters: Immediate and delayed hypersensitivity should be replaced by a classification based on the type of antigen-specific lymphocyte. B or T-responsible for the effects of hypersensitivity.

Experimental part
Case presentation
A 50-year-old white male with cough, fever, signs of mild respiratory failure. Computed tomography (CT) scan of the chest demonstrated the mediastinal lymph nodes with the following dimensions: 2 cm in the right paratracheal area, 0.6 cm in the lung hila and 1.7 cm infracarinal. Disabling, fibrous lesion, antero- basal, left lower lobe. Subpleural, bilateral, pulmonary ground glass opacities were noticed. Trachea and main bronchus were permeable. Heart presented normal aspect. Pulmonary artery, thoracic aorta have normal caliber. Adrenal glands with normal aspect were found.

An open lung biopsy of the lingula and basal pyramid (paracardiac segment) was performed. Haematoxylin eosin staining indicated a biopsy from peripheral parenchyma with multiple lymphoid follicles separated one from each other. Focally we noticed severe bronchioalveolar destruction. We found alveoli irregular distension, massive accumulation of macrophages in the alveolar lumen, focally associated with edema, a high number of intravascular and extravascular eosinophils without a significant fibrosis. Occasionally, the blue corpuscles were present. The dusty macrophages were rare, crowded in small groups, perivascular, predominantly. The silver staining revealed a normal reticulin network in perivascular area and lung septa but disorganized in massive inflammation areas. The reticulin network was presented around lymphoid follicles.

Keywords: hypersensitivity reactions, mononuclear leukocytes, histopathological features
Immunostaining for CD3 indicated a positive reaction with heterogeneous distribution in the lung parenchyma. It was noticed an accumulation in the lamina propria of bronchioles (fig. 1a) and an abnormal distribution in the lymphoid follicles (germinal center) (fig. 1b).

CD20 expression was intense in the lymphoid follicles (fig. 1c) compare with CD5 immunoreaction which showed rare and weakly positive cells in the same area (fig. 1d). The reaction for CD15 was negative.

BCL2 positive reaction was restricted to the periphery of lymphoid follicles, respecting the normal distribution of this marker (fig. 1e). Immunostaining for Ki67 revealed a positive reaction in the germinal center of lymphoid follicles (fig. 1f).

Expression of CD68 was intense in the cells with macrophages morphology. Immunostaining with anti-mast cell tryptase antibody showed a high number of mast cells around the lymphoid follicles, in the connective tissue. Many mast cells were founded, concentrated in the immediate vicinity of the respiratory epithelium, in the lymph nodes from this area. In the lymph nodes which are not surrounded by epithelium, mast cells were disposed to the periphery of these, in a smaller number compare with previously situation. Only a few, isolated follicles presented mast cells in the central areas. The most of the nodules were situated in the vicinity of blood vessels. In this area was found a high number of mast cells with an oval shape, most of them partially degranulated (fig. 1g). Free mast cells granules were noticed around the collagen fibers, around vessels from the vicinity of nodules. The numerical distribution of mast cells was different from one node to another. The dimensions were relatively small. An extremely high number of mast cells were found in the interalveolar septa (fig. 1h).

**Results and discussions**

The diagnosis of delayed-type hypersensitivity was sustained in our case by immunohistochemical profile: CD3 positive with heterogeneous distribution in the lung parenchyma, CD20 intense positive in the lymphoid follicle, BCL2 positive, with normal distribution in the lymphoid follicle, CD15 negative, CD68 positive, mast cell tryptase positive heterogeneous. An accurate differential diagnosis represents an important step for patient’s evolution and prognosis. The differential diagnosis with other diseases which have the delayed type hypersensitivity as mechanism is important to make.

Enander et al, 1988 [7] studied the appearance of mononuclear cells, mast cells and mucus-producing cells in the lung and their linkage to the development of delayed hypersensitivity (DH) reactions. After in vivo treatment with the monoclonal GK1.5 (anti-L3T4) antibody resulting an inhibition of the DH reaction and a decrease number of mononuclear cells and mucus-producing cells, but not mast cells in the lung of sensitized and challenged mice. In our case, many mast cells were concentrated in the immediate vicinity of the respiratory epithelium, in the follicle from this area. In the follicles which are not surrounded by epithelium, mast cells were disposed to the periphery of these, in a smaller number compare with previously situation.

![Fig.1a- Immunostaining for CD3. Heterogeneous distribution of CD3 in the lung parenchyma, with accumulation of positive cells in the lamina propria of bronchioles, X 100;](image1.png)

![Fig.1b- Immunostaining for CD3. The abnormal distribution in the germinal center of the lymphoid follicles, X 100;](image2.png)

![Fig.1c- Immunoreexpression of CD20. An intense expression in the lymphoid follicles, X 400;](image3.png)

![Fig.1d- CD5 immunoreaction. Rare and weakly positive cells in the lymphoid follicles, X 400;](image4.png)

![Fig.1e- Immunoreexpression of Bcl 2. The normal distribution, with reaction limited to the periphery of lymphoid follicles, X 100;](image5.png)

![Fig.1f- Immunoreexpression of Ki67. Positive reaction in the germinal center of lymphoid follicles, X 200;](image6.png)

![Fig.1g- CD68 immunoreaction. Mast cells with an oval shape, most of them partially degranulated, X 200;](image7.png)

![Fig.1h. CD68 immunoreaction. High number of mast cells situated in the interalveolar septa, X 100.](image8.png)
In the lung, hypersensitivity pneumonitis (HP) is a relatively rare and is characterized by the predominance of mononuclear inflammation of the lung interstitium, terminal bronchioles and alveoli. The histopathological specimens show interstitial inflammation accompanied by organizing pneumonia and multinucleate giant cell typical of hypersensitivity pneumonitis. The most significant clinical feature of HP is granuloma formation (absent to our patient), possibly progressing to lung fibrosis. Historically, HP has predominantly resulted from occupational exposures and therefore has a variety of names based on occupation or antigen association (farmer’s lung) [8]. A combination of host and environmental factors should be considered as a requisite to developing this disease. Although the antigens differ widely, the clinical syndromes that results are very similar. HP occurs mainly in non-smokers, and clinically it may be in acute, subacute, or chronic forms.

It can be excluded another diseases with granuloma formation: TB (caseating granulomas, cavities with approximation of walls, granulation tissue, fibrosis and stelate scar), sarcoidosis (non-caseating epithelioid granulomas with tightly packed epithelioid cells, Langhans giant cells and lymphocytes (T cells), usually in interstitium adjacent to bronchioles and around and within vessel walls, pleura and connective tissue septa; necrotizing sarcoid granulomatosis: extensive, vascular, non-caseating sarcoid-like granulomas invading pulmonary arteries and veins with diffuse necrosis of lung parenchyma, Schaumann bodies, asteroid bodies).

Among the diseases that can be addressed in the differential diagnosis include chronic obstructive pulmonary disease (COPD). This is an inflammatory disease in which the cellular infiltrate is comprised primarily of CD81/Th1 and CD41/Th1 lymphocytes and macrophages. This infiltrate, which persists long after cigarette smoking is ended, is diffusely distributed throughout the lung, including the small airways, submucosal glands, lung parenchyma, and pulmonary arteries. In addition, T cells, B cells, macrophages, and dendritic cells aggregate into organized lymphoid follicles in close proximity to the airways and within the lung parenchyma [9]. Compare with this, our case presented lymphoid follicles in the lung parenchyma and a high number of mast cells around blood vessels and in the interalveolar septa also.

Microscopic description of lymphoid interstitial pneumonia (LIP) included: lymphocytes with germinal centers, plasma cells, macrophages and epithelioid granulomas in lung interstitium, no effacement of alveolar architecture, no invasion of parietal pleura, although visceral pleura may have mild inflammation, late-diffuse interstitial fibrosis. Our case did not present epithelioid granulomas, but its lung architecture showed alveolar irregular distension, massive accumulation of macrophages in the alveolar lumen, focally associated with edema. It was noticed a high number of intravascular and extravascular eosinophils without a significant fibrosis. Immunophenotyping studies for lung non-Hodgkin lymphoma used antibodies to Ki-67, CD3, CD5, CD10, CD19, CD20, CD22, CD23, CD45 and CD79a selectively according to suspected subtype [10]. Our case presented CD3 positive in germinal centre of lymphoid follicle, CD20 intensely positive in the lymphoid follicle, CD 5 rare and weakly positive in lymphoid follicle, CD15 negative. These aspects excluded non-Hodgkin lymphoma diagnosis.

There are many forms of drug delayed hypersensitivity. From these, to the lungs have been described 2 cases of respiratory type-IV hypersensitivity reactions due to corticosteroids like a rare phenomenon. Constantin, 2009 [11] presented a case of a patient who developed fever, arthralgias, myalgias, leukocytosis, and ARDS following a second infliximab infusion, after a 15-month drug holiday. Human antichimeric antibodies (HACA) were strongly positive, and no other etiology for acute respiratory distress syndrome (ARDS) was discovered. This may have represented an unusually severe delayed hypersensitivity reaction to infliximab. Our patient presented simptomatology after professional dust exposure. In the literature, other cases with effects to the lungs were described by Rieger, 2002 [12] - a case of adult respiratory distress syndrome associated with infliximab therapy, Potenza, 2010 [13] - dysesthesia and laryngeal spasm developed 10 h after the sixth administration of oxaliplatin to a 46-year-old man with adenocarcinoma of the sigmoid colon.

Conclusions

Lung delayed type hypersensitivity diagnosis requires analysis of correlation between clinic, radiographic, physiologic and pathologic criteria.

Acknowledgements: Supported by internal funds from Victor Babes University of Medicine Pharmacy Timisoara, Romania Research Grants No. PII-C5-TC-2017-08 - 770/17.01.2017 and PII-C5-TC-2017-07.

References


Manuscript received: 21.01.2018