Surveillance of Antibiotic Resistance Among Enterobacteriaceae Strains Isolated in an Infectious Diseases Hospital from Romania

MANUELA ARBUNE1, MIOARA DECUSARA1,2, LUANA ANDREEA MACOVEI1, AURELIA ROMILA1, ALINA VIORICA IANCU1, LUCIAN LAURENTIU INDERI1, LILIANA PAIWE1, GHEORGHE RAFTU1

1Dunarea de Jos University of Galati, Centre of Medical-Pharmaceutical Research, 47 Domneasca Str., 800008, Galati, Romania.
2Grigore T. Popa University of Medicine and Pharmacy Iasi, Department of Rheumatology, Rehabilitation, Physical Medicine and Balneology, 16 Universitatii Str., 700115, Iasi, Romania

The aim of the present study was to characterize the antibiotic resistance profile of enterobacteriaceae strains isolated in Infectious Diseases Hospital Galati, Romania, during 2016, in order to guide the local antibiotic stewardship strategy. There are 597 biological samples with positive cultures for enterobacteriaceae, related to invasive and non-invasive infections. The main bacterial genus were E. coli 62%, Klebsiella spp 15%, Proteus spp 11% and Salmonella spp 6%. Over a half of isolated strains have one or more antibiotic resistance. The resistance level depends on bacterial genus, with highest level found among the rare isolates: Enterobacter spp, Citrobacter spp, Morganella spp and Serratia spp. The rate of MDR was 17.6% for E. coli, 40.9% for Klebsiella spp and 50.7% for Proteus spp, while the rate of strains producing Extended Spectrum of Beta Lactamase are 7.2% for E. coli, 28.4% for Klebsiella spp and 12.3% for Proteus spp. The carbapenem resistant strains were found in 1.1% cases.

Keywords: antibiotic resistance, multidrug resistance, ESBL, enterobacteriaceae

The World Health Organization has recognize a list of pathogenic germs that require to intensify the efforts to research and develop new antibiotics. Prioritization has taken into account the mortality, morbidity, effectiveness of existing therapies, the level and rhythm of antibiotic resistance development. Priorities are classified as critical, high and medium. Enterobacteriaceae resistant to cephalosporins and carbapenems are on the critical list along with Acinetobacter baumanii and Pseudomonas aeruginosa resistant to carbapenems[1]. Enterobacteriaceae are Gram negative bacteria belonging to the commensally flora of the gut, although are able to be involved in respiratory, urinary skin and soft tissues infection or in invasive infection. The Enterobacteriaceae Family includes Escherichia coli, Klebsiella spp., Proteus spp., Morganella spp., Providentia spp., Enterobacter spp., Serratia spp., Salmonella spp, Shigella spp. and Yersinia spp. The common microbiological features are short rods, non-sporeulating, facultative anaerobes, mobile (except Klebsiella spp. and Shigella spp.), catalase positive, oxidase negative and usually able to reduce Nitrate to Nitrite [2].

The Enterobacteriaceae are naturally susceptible to quinolones, aminoglycosides, betalactam drugs, colistin, fosfomycin, nitrofurantoin and trimethoprim-sulfamethoxazole [3].

Beta-lactam antibiotics are the preferred options for many Enterobacteriaceae infections. Commonly, the mechanism of resistance to β-lactamines is enzymatic inactivation by hydrolysis of β-lactam ring (fig.1).

More than 890 β-lactamases were identified, applying the bacterial DNA sequencing technology[4]. According to the functional characteristics and enzyme substrate, there are recognized four classes of β-lactamases: A, B, C and D. An updated classification comprise two categories: serine-β-lactamases with 2 groups (group 1-class C, group 2-class A and class D) and metal-β-lactamases, with the 3rd group - class B[5].

* email: mioaradecu@yahoo.com
strains were performed according to classical methodology[8]. Bactec 9050 automated analysis equipment was used for bacterial growth in hemoculture (HC). Other biological samples, as urine, stool, sputum, pus from wounds or leg ulcers, vomiting, catheters, otic and genital secretions, were inoculated in solid media using streak plate technique and were incubated at 37°C. Microbial identification was performed by Vitek 2 Compact Automated System. Antibiotic susceptibility was tested by Kirby Bauer diffusion method [9], according to CLSI recommendations [10]. We have tested the antibiotics according to the type of biological sample and bacterial genus.

The Enterobacteriaceae isolates were systematically tested to Ampicillin (Amp), Amoxicilnine-Clavulanat (AmpC), Cefuroxime (CFX), Cefotaxime (CTX), Gentamicine (Ge), Trimethoprim-Sulfamethoxazole (TMP-SMX) and Norfloxacine (Nor). Supplementary tests to Nitrofurantoin (Nf) and Fosfomicyn (Fos) were achieved for the germs from urine culture (UC). The results of antibiogram were categorised as susceptible (S), intermediate (I) or resistant (R). The strains producing Extended Spectrum Beta-Lactamase (ESBL) were identified by Double Disc Synergy Test [8]. The MDR strains were identified according ECDC definition[6]. Depending on the clinical significance and the clinician’s requests, several MDR strains were supplementary tested for salvage antibiotics, such carbapeneme (Ertapenem, Imipenem/ Meropenem). The quality controls in antibiotic susceptibility testing used E. coli reference strain ATCC 25922.

The results were collected in the hospital’s antibiotic resistance database. The frequency and charts analyses were performed by Microsoft XL software.

Results and discussions
During 2016, there were identified 1074 bacterial strains in the Microbiology Laboratory of the Galati Infectious Diseases Hospital. Gram negative rods were prevalent, with 64.3% (691/1074). The Enterobacteriaceae Family represented 86.3% (597/691) among the Gram negative bacilli and 55.5% (597/1074) of the isolated bacterial strains (fig. 2).

Most Enterobacteriaceae were isolated from urocultures (73.3%), leg ulcers and other skin lesions (15.7%), coprocultures (6.3%), followed by hemocultures (1.6%) and other biological products (7%). No more than 10 positive haemocultures were found, with identified 5 E. coli, 4 Klebsiella spp. and 1 Proteus spp. Most coprocultures were positive for Salmonella spp (94.7%). E. coli prevailed in urocultures (76.4%). The largest variety of species was found in skin lesions (leg ulcers and other wounds), with higher frequency for Proteus spp (fig. 3).

Table 1

<table>
<thead>
<tr>
<th></th>
<th>N</th>
<th>≥1R (n)</th>
<th>≥1R (%)</th>
<th>ESBL (n)</th>
<th>ESBL (%)</th>
<th>MDR (n)</th>
<th>MDR (%)</th>
<th>CRE</th>
</tr>
</thead>
<tbody>
<tr>
<td>E. coli</td>
<td>373</td>
<td>225</td>
<td>62%</td>
<td>127</td>
<td>7.2%</td>
<td>66</td>
<td>17.6%</td>
<td>0</td>
</tr>
<tr>
<td>Proteus spp</td>
<td>65</td>
<td>54</td>
<td>83%</td>
<td>8</td>
<td>12.3%</td>
<td>33</td>
<td>50.7%</td>
<td>1</td>
</tr>
<tr>
<td>Klebsiella spp</td>
<td>88</td>
<td>58</td>
<td>65.9%</td>
<td>25</td>
<td>28.4%</td>
<td>36</td>
<td>40.9%</td>
<td>4</td>
</tr>
<tr>
<td>Salmonella spp</td>
<td>36</td>
<td>19</td>
<td>52.7%</td>
<td>0</td>
<td>-</td>
<td>4</td>
<td>11%</td>
<td>0</td>
</tr>
<tr>
<td>Enterobacter spp</td>
<td>20</td>
<td>19</td>
<td>95%</td>
<td>7</td>
<td>35%</td>
<td>9</td>
<td>45%</td>
<td>1</td>
</tr>
<tr>
<td>Citrobacter spp</td>
<td>11</td>
<td>10</td>
<td>90.9%</td>
<td>5</td>
<td>-</td>
<td>7</td>
<td>-</td>
<td>1</td>
</tr>
<tr>
<td>Morganella spp</td>
<td>3</td>
<td>3</td>
<td>-</td>
<td>2</td>
<td>-</td>
<td>2</td>
<td>-</td>
<td>0</td>
</tr>
<tr>
<td>Serratia spp</td>
<td>1</td>
<td>1</td>
<td>-</td>
<td>0</td>
<td>-</td>
<td>1</td>
<td>-</td>
<td>0</td>
</tr>
<tr>
<td>Total</td>
<td>597</td>
<td>-</td>
<td>75%</td>
<td>127.2%</td>
<td>20.5%</td>
<td>128</td>
<td>24.3%</td>
<td>7</td>
</tr>
</tbody>
</table>

Legend: ≥1R: at least one antibiotic resistance, ESBL: Extended Spectrum Beta-Lactamase, MDR: multiresistant, CRE: Carbapenem Resistant Enterobacteriaceae; N: total number; n: partial number.
Frequency analysis of ESBL producing strains and MDR strains according to the type of biological sample proved the highest antibiotic resistance related to the dermatological infections, followed by the urinary infections. Excepting one strain of E. coli ESBL producing and MDR, the other Enterobacteriaceae isolated from hemocultures had not antibiotic resistance problems (fig.4).

The sensitivity to Ampicillin ranged between 50% for Proteus spp and 72% for Salmonella spp (fig.5). The susceptibility to Trimethoprim-Sulphamethoxazole was evidenced for 97% of Salmonella spp strains. This antibiotic could be the first option for the treatment of invasive infectious diarrhea, given that Salmonella spp. has been isolated in almost all (36/37) positive coprocultures.

E. coli was identified in 76% of urinary infections and proved to be susceptible 93% to Nitrofurantoin and 90% to Fosfomicyn. Consequently, Nitrofurantoin or Fosfomicyn could be the first choice for uncomplicated urinary infections. Association of Gentamicine and cephapolin or a quinolone could be the first-line treatment of complicated urinary infections, which are more commonly associated with Klebsiella spp, Proteus spp or other enterobacteria with high risk of resistance (fig.5).

Analysis of antibiotic susceptibility indicates the maintenance of carbapenem sensitivity for most strains of E. coli, Klebsiella spp., Proteus spp. and Enterobacter spp. (over 90%), mentioning that carbapenem testing was not performed systematically. Being salvage antibiotics, carbapenemes are still valid options for the treatment of MDR strains of Enterobacteriaceae. Understanding the local situation of antibiotic resistance for Enterobacteriaceae Family is useful to choice the first-line therapy in different types of infections and to manage the risks of health care associated infections.

All over the world, grown number of antibiotic resistant strains over the past few years is alarming, in both healthcare and community settings. In the United States, over 2 million infections with resistant germs to one or more antibiotics and above 23000 deaths caused by these infections are recorded every year. Enterobacteriaceae producing ESBL are responsible for 26000 (19%) of healthcare associated infections and 1700 deaths [11].

The surveillance report of antibiotic resistance in 2016, achieved by the European Center for Disease Prevention and Control based on invasive bacterial strains isolated from hemocultures or cerebrosplinal fluid, highlights the variability of antibiotic resistance rates in European countries. Romania reported the 31.4% resistance rate, ranking third place among the European countries, following Greece (66.9%) and Italy (33.9%) [12]. The MDR frequency in Romania is 11.7% for E. coli and 55.2% for Klebsiella spp. [12]. These national data are worrying and require rigorous measures to limit antibiotic resistance in hospitals, as well as in the community environment. Comparative with the national data, the current study demonstrate higher MDR rate for E.coli (17.6%) and lower rate for Klebsiella spp. (40.9%) (table I). The differences should be explained considering the variety of biological samples evaluated in our study, the low risk for invasive procedures in the infectious diseases ward and the local particularity of hospital and community antibiotic resistance.

Conclusions

This study highlights the local situation of antibiotic resistance in an infectious diseases hospital from the South East of Romania, for Enterobacteriaceae involved in the community infections as in the health care associated infections. Regional particularities of antibiotic resistance should be considered to develop the treatment protocols and the local antibiotic stewardship strategy.

References


Manuscript received: 28.10.2017