Furosemide Pharmacodynamics and Cardiovascular Effects in Hemodialysis Patients

NICOLAE ALBUCESCU, ADRIAN APOSTOL, IULIANA ROXANA ALBUCESCU, ADELINA MIHAESCU, ADALBERT SCHILLER, ROMULUS TIMAR

1 Victor Babes University of Medicine and Pharmacy, Department of Cardiology, County Emergency Hospital Pius Brinzeu Timisoara, 2 Eftimie Murgu Sq., 300041, Timisoara, Romania
2 Victor Babes University of Medicine and Pharmacy, 2 Eftimie Murgu Sq., 300041, Timisoara, Romania
3 Victor Babes University of Medicine and Pharmacy, Department of Nephrology, Emergency County Hospital Pius Brinzeu, 2 Eftimie Murgu Sq., 300041, Timisoara, Romania
4 Victor Babes University of Medicine and Pharmacy, Department of Diabetes and Metabolic Diseases, Emergency County Hospital Pius Brinzeu Timisoara, 2 Eftimie Murgu Sq., 300041, Timisoara, Romania

Furosemide is a drug that has not only a renal effect, but also a vascular one, resulting in decreased left atrial and ventricular filling pressure accompanied by an increase in venous compliance, all of this with significant effects on central cardiovascular hemodynamics. In dialysis patients, it is still unclear the efficiency of furosemide, a diuretic drug that inhibits the Na+, K+, 2CL⁻ cotransporter in the renal tubular system. Also, furosemide need to be used at much higher doses because of its pharmacokinetic changes in the context of impaired renal clearance. The aim of our study was to investigate whether furosemide induces changes in cardiovascular hemodynamics in end-stage renal disease (ESRD) patients, using standard echocardiography and Tissue Doppler Imaging (TDI). We found correlations between furosemide use and improved cardiac parameters, assessed by multiple echocardiographic variables, and we consider that furosemide has complementary effects in dialysis patients with residual diuresis.

Keywords: furosemide, dialysis residual diuresis, hemodialysis diuretic.

Diuretics are often stopped when patients start dialysis. Some studies have shown that preserved residual renal function in dialysis patients is associated with better cardiovascular status and although the association between diuretic and preserved residual renal function is still in debate, the clinical and paraclinical benefits offered by furosemide make it valuable in dialysis patients with urine output [1-3]. In dialysis patients, even with someresidual diuresis, furosemide has been shown to induce a rapid vascular effect, besides the diuretic effect. Venous dilation occurs, and therefore a decrease in cardiac preload and filling pressures [1,2,4]. Several parameters, such as left ventricular hypertrophy (LVH) and left ventricular (LV) systolic dysfunction, have been identified as independent outcome predictors in dialysis patients [5-7]. Diastolic heart failure and increased filling pressures in dialysis patients often exists without the presence of significant systolic heart failure, and that may be assessed by Doppler techniques, especially Tissue Doppler Imaging (TDI), that has also demonstrated its significant prognostic value for all-cause mortality and cardiovascular death [8-10]. Novel Doppler techniques should be able to detect even more subtle changes in cardiac function induced by furosemide [2,8-11].

E-wave velocity reflects the left atrium (LA)-left ventricle (LV) pressure gradient during early diastole filling and is affected by impaired LV relaxation and left atrial pressure (LAP) [8,9]. A-wave velocity reflects the LA-LV pressure gradient during late diastole, and it depends by LV compliance and LA contractile function. Mitral E-velocity deceleration time (DT) is influenced by LV relaxation, LV diastolic pressures after mitral valve opening, and left ventricular stiffness. Isovolumetric relaxation time (IVRT) is prolonged in patients with impaired LV relaxation but normal LV filling pressures. When LAP increases, IVRT duration shortens and being inversely correlated with LV filling pressures. [8,9] LA volume index (LAVI) reflects the cumulative effects of increased LV filling pressures and increased LAVI is an independent predictor of death, heart failure, atrial fibrillation, and ischemic stroke. CW Doppler tricuspid regurgitation (CWTR) systolic jet velocity—significant correlation exists between systolic pulmonary artery pressure (SPAP) and noninvasively derived LAP. Increased SPAP suggests elevated LAP, if pulmonary disease is absent [9,10]. E/E' velocity has a powerful correlation with pulmonary capillary wedge pressure (PCWP) compared with invasive measurements of LV filling pressure. Mitral E velocity obtained by PW Doppler complemented using E/e' ratio correlates well to the mean pulmonary capillary wedge pressure (PCWP) as obtained by simultaneous catheter measurements [10,12]. E/e' ratio is a marker of left atrial filling pressure. [9,10,12]

Experimental part

Materials and method

We selected for our study, between January 2015 to December 2016, ESRD patients, who were treated with HD three times a week for more than 6 months, in whom there were some residual diuresis (250 to 650 mL urine/day). We chose the patients in sinus rhythm, without severe valvar heart disease, ischemic heart disease, congestive heart failure (NYHA classes III and IV), pulmonary disease or significant pericardial disease. Conventional two-dimensional echocardiography and TDI were recorded with a Siemens Acuson P300, immediately before the dialysis session, therefore cardiac hemodynamics not being influenced by volume or speed ultrafiltration. The echo report was recorded at baseline and further after in similar

* e-mail: adekmi@yahoo.com; Phone: +40 752 119 993

* Authors with equal contribution
conditions. All patients benefited from cardioprotective medications which had shown to reduce mortality [13] in the general population such as angiotensinconverting enzyme inhibitors, beta-adrenergic antagonists (beta-blockers), acetylsalicylic acid, 3-hydroxy-3-methyl-glutaryl coenzyme A reductase inhibitors (statins) and cytoprotective anti-ischemic agent [14]. Dyslipidemia, measured through blood test, (including high levels of cholesterol, triglycerides, LDLc and low levels of HDLc) is part of the factors involved in increased cardiovascular risk associated with CKD and also with progression of kidney failure [15]. Furthermore, the variety of biomarkers available for monitoring and for the prognosis of acute kidney injury (AKI) are limited, and present numerous trials have proven the importance of microRNAs in this field [16,17].

Standard echo measurements, including left ventricular end diastolic and end systolic dimensions (LVEDD and LVESD), end-diastolic and systolic wall thickness of interventricular septum (IVSd and IVSs) and left ventricular posterior wall (PWTD and PWTS) were determined with the M-mode (Mm) technique. Ejection fraction (EF) was determined using M mode and Simpson method and complemented by eyeballing. LV mass was calculated by Devereux's formula using the M-mode of the general population such as angiotensinconverting enzyme inhibitors, beta-adrenergic antagonists (beta-blockers), acetylsalicylic acid, 3-hydroxy-3-methyl-glutaryl coenzyme A reductase inhibitors (statins) and cytoprotective anti-ischemic agent [14].

Dyslipidemia, measured through blood test, (including high levels of cholesterol, triglycerides, LDLc and low levels of HDLc) is part of the factors involved in increased cardiovascular risk associated with CKD and also with progression of kidney failure [15]. Furthermore, the variety of biomarkers available for monitoring and for the prognosis of acute kidney injury (AKI) are limited, and present numerous trials have proven the importance of microRNAs in this field [16,17].

Standard echo measurements, including left ventricular end diastolic and end systolic dimensions (LVEDD and LVESD), end-diastolic and systolic wall thickness of interventricular septum (IVSd and IVSs) and left ventricular posterior wall (PWTD and PWTS) were determined with the M-mode (Mm) technique. Ejection fraction (EF) was determined using M mode and Simpson method and complemented by eyeballing. LV mass was calculated by Devereux's formula using the M-mode of the general population such as angiotensinconverting enzyme inhibitors, beta-adrenergic antagonists (beta-blockers), acetylsalicylic acid, 3-hydroxy-3-methyl-glutaryl coenzyme A reductase inhibitors (statins) and cytoprotective anti-ischemic agent [14].

Dyslipidemia, measured through blood test, (including high levels of cholesterol, triglycerides, LDLc and low levels of HDLc) is part of the factors involved in increased cardiovascular risk associated with CKD and also with progression of kidney failure [15]. Furthermore, the variety of biomarkers available for monitoring and for the prognosis of acute kidney injury (AKI) are limited, and present numerous trials have proven the importance of microRNAs in this field [16,17].

Standard echo measurements, including left ventricular end diastolic and end systolic dimensions (LVEDD and LVESD), end-diastolic and systolic wall thickness of interventricular septum (IVSd and IVSs) and left ventricular posterior wall (PWTD and PWTS) were determined with the M-mode (Mm) technique. Ejection fraction (EF) was determined using M mode and Simpson method and complemented by eyeballing. LV mass was calculated by Devereux's formula using the M-mode of the general population such as angiotensinconverting enzyme inhibitors, beta-adrenergic antagonists (beta-blockers), acetylsalicylic acid, 3-hydroxy-3-methyl-glutaryl coenzyme A reductase inhibitors (statins) and cytoprotective anti-ischemic agent [14].

Dyslipidemia, measured through blood test, (including high levels of cholesterol, triglycerides, LDLc and low levels of HDLc) is part of the factors involved in increased cardiovascular risk associated with CKD and also with progression of kidney failure [15]. Furthermore, the variety of biomarkers available for monitoring and for the prognosis of acute kidney injury (AKI) are limited, and present numerous trials have proven the importance of microRNAs in this field [16,17].
populations. Some studies have suggested that furosemide also has extra renal effects, some vascular effects that may justify its use also in anuric patients [2,19]. However, studies evaluating the vascular effects of furosemide in ESRD patients have shown conflicting results. Schmieder published a study in which an IV bolus of furosemide was given to HD patients [20]. The result was a significant decrease in central blood volume that was seen minutes after the bolus, indicating a redistribution of blood from the cardiopulmonary system to the periphery [20]. Other authors demonstrated that after an intravenous dose of furosemide left ventricular filling pressure decreased. It's important to understand that there is much more to an echo exam than mere EF [5]. eGFR value alone—demonstrated that it is a better follow-up parameter than EF, as a marker for cardiovascular morbidity and mortality [21]. So, in this special population we have to come with something more in order to add more prognostic value. The novel tissue Doppler and Speckle tracking techniques can guide us to understand and treat the complex patient involved in this pathophysiological relation between kidney and heart [8-12]. Also, in most studies, arterial stiffness is assessed by carotid-femoral pulse wave velocity (cfPWV), and would have been a useful marker because it is correlated with overall mortality and cardiovascular mortality, even in dialysis patients [22]. Furthermore, we emphasise the need for more large-scale randomized studies in dialysis patients and comprehensive cardiovascular guidelines for their management [2,23].

Table 2

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Baseline</th>
<th>3 months</th>
<th>6 months</th>
<th>9 months</th>
<th>12 months</th>
<th>18 months</th>
<th>24 months</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>EF (%)</td>
<td>61.4±1.0</td>
<td>62.4±1.3</td>
<td>61.9±1.2</td>
<td>60.6±1.4</td>
<td>58.9±1.5</td>
<td>56.2±1.6</td>
<td>57.2±1.5</td>
<td>NS</td>
</tr>
<tr>
<td>FS (%)</td>
<td>37.4±1.5</td>
<td>37.4±1.2</td>
<td>35.1±1.4</td>
<td>36.6±1.2</td>
<td>34.3±1.6</td>
<td>35.3±1.1</td>
<td>34.8±1.8</td>
<td>NS</td>
</tr>
<tr>
<td>E(m/s)</td>
<td>0.9±0.3</td>
<td>1.2±0.5</td>
<td>1.1±0.2</td>
<td>0.8±0.4</td>
<td>1.0±0.1</td>
<td>1.1±0.4</td>
<td>1.2±0.5</td>
<td><.001</td>
</tr>
<tr>
<td>A(m/s)</td>
<td>0.7±0.4</td>
<td>0.9±0.2</td>
<td>0.7±0.5</td>
<td>0.9±0.2</td>
<td>0.8±0.3</td>
<td>0.6±0.5</td>
<td>0.5±0.4</td>
<td><.001</td>
</tr>
<tr>
<td>E/A</td>
<td>1.9±2.8</td>
<td>1.8±1.1</td>
<td>2.0±1.5</td>
<td>2.2±1.3</td>
<td>2.1±1.0</td>
<td>1.9±1.4</td>
<td>2.2±1.2</td>
<td><.001</td>
</tr>
</tbody>
</table>

Table 3

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Baseline</th>
<th>3 months</th>
<th>6 months</th>
<th>9 months</th>
<th>12 months</th>
<th>18 months</th>
<th>24 months</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>E'(cm/s)</td>
<td>5.8±1.4</td>
<td>6.3±1.6</td>
<td>5.9±1.5</td>
<td>5.9±1.7</td>
<td>7.1±1.8</td>
<td>6.4±1.6</td>
<td>7.2±1.7</td>
<td><.001</td>
</tr>
<tr>
<td>A'(cm/s)</td>
<td>5.6±2.4</td>
<td>4.6±2.3</td>
<td>4.7±1.9</td>
<td>5.1±1.8</td>
<td>5.6±2.0</td>
<td>5.5±2.1</td>
<td>6.5±2.2</td>
<td><.001</td>
</tr>
</tbody>
</table>

Abbreviations: EF=Ejection fraction, FS=Fractional shortening, E=Early distolic flow velocity, A=Late distolic flow (atrial kick), DT=Mitril E-velocity deceleration time, LAV=left atrial volume, LAd=left atrial antero-posterior diameter, CW TR=continuous wave Doppler tricuspid regurgitation velocity, SBP/DBP= systolic/diastolic blood pressure, E’=Average of the lateral and septal E’ values, IVRT=Isovolumetric relaxation time, ePCWP=estimated pulmonary capillary wedge pressure.
Conclusions

The aim of this paper was to demonstrate whether diuretic should be continued on hemodialysis patients with some residual diuresis, even after they have been on dialysis for a period of time. For the specific hemodialysis population, dosing of furosemide, can significantly improve echo parameters, it reduces the weight gain between dialysis, may result in better blood pressure values and possible lower the risk of heart failure and improved symptoms. Furthermore, there may be a favorable impact on cardiac hemodynamics, probably both by vascular and renal effects.

References

16. Ivan MV, Rogobete A, Bedreg O ET AL - New Molecular and Epigenic Expression as Novel Biomarkers in Critically Ill Polytrauma Patients with Acute Kidney Injury (AKI) - Clinical Laboratory, volume:64 Issue:5, pg 663-668.
26. Ivan MV, Rogobete A, Bedreg O ET AL - New Molecular and Epigenic Expression as Novel Biomarkers in Critically Ill Polytrauma Patients with Acute Kidney Injury (AKI) - Clinical Laboratory, volume:64 Issue:5, pg 663-668.