Does the Composition of the Stones Counts in Patients Who Underwent Percutaneous Nephrolithotomy?

CIPRIAN TODEA-MOGA1,2, ORSOLYA MARTHA1,2, IOAN SCARNECIU1,4, CAMELIA CORNELIA SCARNECIU1,4, LAURIAN MAXIM1, COSTIN VLAD ANASTASIU1, ALEXANDRU BANUTA1, VERONICA GHIRCA1,2*, DAN LIVIU DOREL MISCHIANU1,4,
DANIEL PORAV-HODADE1,2
1Urology Clinic, Mures County Hospital, 50 Dr. Gheorghe Marinescu Str., 540136, Targu Mures, Romania
2University of Medicine, Pharmacy, Science and Technology, 38 Gheorghe Marinescu Str., 540139, Targu Mures, Romania
3University of Medicine and Pharmacy Transilvania, 56 Nicolae Balcescu Str., 500019, Brasov, Romania
4Clinical Emergency County Hospital, 25-27 Bucuresti Road, 500326, Brasov, Romania
5Carol Davila University of Medicine and Pharmacy, 8 Eroi Sanitari Str., 050474, Bucharest, Romania
6Academy of Romanian Scientists, 54 Splaiul Independentei, 030167, Bucharest, Romania

The aim of this study is to highlight the importance of percutaneous nephrolithotomy (PCNL) in the treatment of kidney stones with different chemical composition. We included in this study 200 patients with kidney stones who underwent PCNL. In most of the cases the stones were composed by calcium, usually calcium oxalate followed by struvite and uric acid component. The stones were mostly localized in the renal pelvis (142), inferior calyx (46) and ureteropelvic junction (4) and 28 cases with staghorn stones. Intraoperative complications were: migrating fragments (22%), hemorrhage (12%), lesions of the renal pelvis and difficulties of percutaneous access or dilatation (6%). The postoperative complications were: bleeding (20%), obstruction caused by stone fragments (22.5%), hydronephrosis (18%), fistula (13%). The average length of hospitalization after PCNL was 5.58 +/- 2.69 days SD. Stone-free rate was: 77.5%. PCNL is a safe and effective method of treatment for large and complex stones. Intra and postoperative complications after PCNL are not influenced directly by the chemical composition of the stones. It is important to evaluate the chemical composition of the stones in order to establish the treatment management and to recommend a proper conservative treatment in order to prevent the recurrence of the disease.

Keywords: PCNL, renal stone, Steghorn calculi, postoperative complications.

Kidney stone is a common and painful condition and represent a major cause of morbidity with a prevalence of approximately 10% in men and 5% in women [1].

In the United States, European countries and Southeast Asia, the prevalence of lithiasis has doubled over the past thirty years [2]. In Caucasian males the incidence of kidney stones is higher [3] and rises to approximately 3 out of 1,000 cases in a year in people aged 40 - 60 years old, and then decrease [4]. In females, the incidence rate is higher after 20 years old and decrease after the age of 50 [3].

The increased incidence of lithiasis is associated with race, ethnicity, residence, improved living standards and has become recognized as a risk factor for chronic kidney disease [5,6], coronary artery disease [7,8], hypertension [9], dyselectrolytemias [10,11], type 2 diabetes and systemic inflammatory response syndrome [12]. Without medical treatment lithiasis can become a chronic disease in 10 years, with an approximately 50% recurrence rate [12].

The risk factors for developing kidney stones can be classified into three groups: endogenous causes (metabolic dysfunctions, endocrine diseases like hyperparathyroidism, tumors [13], gastric hypoaclidity, etc.), renal causes (kidney dysfunction, tubular disorders), and post-renal causes (malformations and urinary tract obstruction by extrinsic compression or invasion [14-17], bladder pathology [18,19] or subvesical obstruction [20,21], post-surgical procedures [22,23], bacterial infections) [24].

Percutaneous nephrolithotomy (PCNL) represents a surgical treatment method that allows the fragmentation and extraction of large kidney stones. This procedure has a higher morbidity than Extracorporeal Shock Wave Lithotripsy (ESWL) or ureteroscopy and it is only used in case of complex stones, exceeding 2 - 2.5cm [25]. The progress of minimally invasive treatment alternatives and the development of instruments for ureteroscopy assure the achievement of higher performances, especially in both ureteral and renal lithiasis [26-28].

Experimental part
Material and method
We included in this study 200 patients with different chemical composition of renal stones who were surgically treated by performing percutaneous nephrolithotomy (PCNL) over a period of 10 months (June 2016- April 2017).

Inclusion criteria and the classification of the obtained data in this study were:
- patients older than 18 years with renal stones located in the lower calyx, renal pelvis and ureteropelvic junction.
- the size of the kidney stone e* 20 mm; (stone size was calculated by taking into consideration the sum of the maximum diameters) and multiple lithiasis.
- the chemical composition of the stones

We don't have all the data of the patients concerning the chemical composition of the stone (mostly from financial reasons), but in most of the cases the stones were composed by calcium, usually calcium oxalate followed by struvite and uric acid component.

The protocol used for the selection of patients consisted of:
- history;
- abdominal ultrasound;
- intravenous pyelogram (IVP) and/or computed tomography (CT);
- complete blood count, biochemical, coagulation parameters, urine analysis.

* email; veronica.ghirca@yahoo.com All authors have equal contribution
Electrolyte content of water can influence prevalence of the patients compared with 13.4% of the cases with formation that can be explained through the increased lead to calcium oxalate stone formation [39,40].

Inhibitors like glycosamino-glycans can increase the risk of uric acid stone formation [46].

The evaluation of the chemical composition of the stones is very important and lead us to establish a proper treatment management (conservative and/or surgical) and to prevent the recurrence of the disease. Chemical stone analysis is a qualitative method of determining the chemical composition of stones [47]. The modern methods developed, include X-ray diffraction, infrared spectroscopy, optic polarizing microscopy, scanning electron microscopy and others [47]. In all the cases included in our study we performed surgical treatment-percutaneous nephrolithotomy (PCNL).

Regarding the intraoperative complications in most of the cases (44%) was the migration of stone or fragments, hemorrhage in 24 cases, impossibility of percutaneous access of the inferior calyx or the inability or difficulty of dilatation of the nephrostomy tract, in 10 cases, difficulty of ureteral catheterization in 6 cases, lesions of the ureteral orifice in 4 cases and lesions of the renal pelvis in 2 cases. The chemical composition of the stones was not correlated with the intraoperative complications, p>0.05.

The most frequent postoperative complications observed in our study were residual fragments in 45 cases, hemorrhage in 40 cases, postoperative hydronephrosis in 36 cases and lumbar fistula in 26 cases, after the migration of a fragment into the ureter. The chemical composition of the stones was not correlated with the postoperative complications, p>0.05.

The average length of hospitalization after the surgery was 5.58 days (+/- 2.69 standard deviation). In most of the cases the cause of the prolonged hospitalization were haematurria and the obstructed complications (hydronephrosis, residual fragments, fistula).

The stone-free rate was established after the surgery according to the abdominal ultrasound result and radiological examination, which proved to be 77.5%.

Conclusions
PCNL is a safe and effective method of treatment for large and complex stones.

Intra and postoperative complications may occur without being influenced directly by the chemical stones’ composition and this was not a decisive factor in the choice of surgical treatment. It is important to evaluate the chemical composition of the stones in order to establish the treatment management and to recommend a proper conservative treatment in order to prevent the recurrence of the disease.

References