The Use of a Screw Sealer in Implant Abutment Fixation

EMANUEL ADRIAN BRATU1, LAURA CRISTINA RUSU2*, OLIPIU LADISLAU KARANCSI1*, SORIN GHEORGHE MIHALI1

1 Victor Babes University of Medicine and Pharmacy, Faculty of Dentistry, Department of Implant Supported Restorations, 2 Eftimie Murgu Sq., 300041 Timisoara, Romania
2 Victor Babes University of Medicine and Pharmacy, Faculty of Dentistry, Department of Oral Patholog, 2 Eftimie Murgu Sq., 300041, Timisoara, Romania
3 Vasile Goldis West University, Faculty of Dentistry, Department of Prosthodontics, 94-96 Revolutiei Blvd., 310025, Arad, Romania

In implantology, osteo-integration, stability and implant handling force is the major challenge for determining success of treatment. The present study aims to identify whether the use of an antimicrobial adhesive between the implant body and the abutment changes the torque force required for the unit. By using an antimicrobial sealant it is intended to reduce the torque used on the implants to increase their stability and to create the optimal conditions for an good osteointegration.

Keywords: screw sealer, implant, microleakage

For many years, implant- abutment connections were the subject of evolution. They evolved from external to internal and then to conical connections, with the idea of maintaining better soft tissue and bone conditions. Another goal was to have a very good adaptation to the implant body in order to prevent micromovement and microleakage [1]. Still today we have many studies which show bacteria to be present even inside conical connection implants [2, 3] and the use of chlorhexidine is not efficient in decontaminating [4-6]. Even with modern implant connections, micromovement is still present, but the most important problem is immediate loading [7]. It has been demonstrated that implants need an initial insertion torque of about minimum 25-30 Ncm in order to be loaded immediately, but some components have to be tightened at the same amount of force. This can lead to implant movement in the bone. Also it has been proved that a one abutment one time procedure may reduce bacterial contamination of implants [4]. The present study is about a substance used in industry for screw loosening prevention. Loctite 243 is a dimethacrilate ester combined with maleic acid, used in automotive industry for preventing screw loosenings and comes in the form of a blue liquid [8]. This is a in vitro study with several types of implants that shows that the use of this fluid enhances the stability of the connection and can prevent bacterial leakage, allowing the components to be tightened at a torque inferior to 20 Ncm, but offering a removal torque and a stability to the components equal or exceeding a tightening of 30 Ncm.

Experimental part
Materials and methods

For this study 2 implant systems with different connection types were used. MIS SEVEN with internal hex, standard platform diameter 3.75mm, length 11.5, and MIS C1 standard platform, diameter 3.75mm, length 11.5mm with conical connection. We used different connections in order to prove the efficiency of the material for all implant systems.

The aim of the study was to verify the effect of LOCTITE 243 used on a titanium interface between abutment screw/multi unit abutment and implant body.

Pairs of each implant type were inserted into plastic mandibles, which were kept at 37 degrees Celsius.

* email: laura.rusu@umft.ro, Phone: +40728700049; email: olilk@umft.ro, Phone: +40740203222

Fig. 1 The two types of implants transferred to the model
Fig. 2 The antibacterial adhesive
Fig. 3 The first pair of implants with and without adhesive
Fig. 4 The second pair of implants with and without adhesive
The removal torque of the components in internal hex implants (MIS Seven) fixated with Loctite 243 increased with 10 Ncm at a level of 25 Ncm, compared to the fixation torque of 15 Ncm. In the C1 Conical connection implants, the increase was higher, reaching 30 Ncm. The components fixated without Loctite had the same removal torque as the fixation torque. Allowing the material to set is important, so no movement of the screws is recommended for 24h, and also the material is not to be exposed to air longer than 5 min, because it starts to set. These data are indicated in the sheets of the producer of Loctite. As implant component screws are made out of titanium and are very small, we can equal them to the steel components of the industry with the smallest gaps. For the clinical use, it is important to assure that the interior of the implant should be clean and dry. This can be achieved by the use of alcohol 96 grd, saline solution and airspray. Also it is better to fixate the multi unit abutment during the surgical time or after the use of a healing screw for at least 3 weeks. Fixation of the abutment at implant uncover is the worst option because it is hard to keep out the blood from entering the interior of the implant, and then to dry it out as the flap is not elevated like in the surgical phase.

After 24 hours every implant wich received abutments fixated with LOCTITE 243 presented a higher value of the removal torque on the abutment screw. This shows that, if left untouched for 24 h, Loctite is able to generate a higher removal torque. On the other side, the removal torque was not to big to generate forces that could eventually be of danger to the implant abutment interface.

Also, a very thin layer of Loctite was present at the implant platform, showing perfect closure of the small spaces on this interface. Inside the implant, Loctite filled all voids generated by the anatomy of the connection. The authors have a 15 year clinical experience using this material in the same protocol.

Recently, several articles report of the benefits of using threadlockers in prevention of screw loosening and bacterial infiltration. Some other articles report the influence of the implant abutment interface in aspects of bacterial microleakage[14-21] and the benefits of using sealing agents [22, 23].

Conclusions
Loctite 243 proved to be an efficient material in fixating and sealing out spaces between implant components. Because bacterial infiltration is documented even in conical connection implants[13], and a Poly anhydride ester showed antibacterial activity [24] we can assume that a good dosage of Loctite 243 (dimethacrilate ester combined with maleic acid) can eliminate bacterial colonization for all implant types. This is an important fact for the clinical use, and further in vivo studies have to be made in order to prove this fact [22, 23, 25], and to prove that there is no inflammation of the soft tissues coming in contact with small amounts of Loctite.

References

Results and discussions
Removal torque of the abutment screw increased after 24 h with the use of Loctite 243 in all types of connections.