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Abstract: Simulators are of great interest in Chemical Engineering because they facilitate process 

optimization and help evaluate different solutions through the so-called “what-if” approach. They 

include the most advanced thermodynamical models and complete libraries for the calculation of 

physicochemical properties and estimation of phase equilibria data which are successfully integrated 

in the process design. Moreover, simulators allow addressing both stationary and batch operations. 

For this reason, their use in the design of Industrial Chemistry processes has gained much acceptance 

in the last decades. Even so, simulations should be accompanied by another computational tool which 

allows the professionals to implement specific algorithms which relate inputs and outputs, so as to get 

the most out of the computing power. We herein exemplify how Aspen Plus and Mathcad Prime 

software packages were successfully integrated in a case study on the removal of carbon disulphide by 

contact with a paraffinic oil in an absorption tower. This absorption operation was studied in both 

trayed and packed columns. Regarding the first contact type, i.e. trays, Mathcad’s powerful 

programming tool and graphical interface enabled to corroborate and to better understand the effect 

of temperature on the number of theoretical stages previously observed with Aspen Plus. 
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1. Introduction  
Absorption, which involves the transfer of one (or several) solute(s) from a gas phase into a liquid 

phase, is one of the most extensive practices in the chemical industry. Absorption is used to separate 

gas mixtures, remove impurities, or recover valuable chemicals [1]. Professionals working in the 

chemical processes industry all over the world, hence, need to address the design and optimization of 

this unit operation. According to the contact method, the operation can be categorized into 

equilibrium-staged and continuous contact. Equilibrium-staged absorption requires to determine the 

number of theoretical plates, whilst for a continuous contact absorption process the packing height has 

to be calculated. In both cases, professionals demand computational strategies which are flexible 

enough so as to analyze the effect of the different variables involved in a fast and effective way. Under 

such circumstances, the incorporation of process simulators can have many benefits, as they provide 

great flexibility for examining “what-if” scenarios and for developing process optimization [2-4]. After 

distillation, absorption is probably the second most reported application of process simulators, with 

Aspen Plus and Aspen Hysys being the most used software packages. This is the case, for example, of 

a book edited by the American Institute of Chemical Engineering (AIChE) on general process design, 

which presents a case study dealing with the removal of HCl from air in a Pall rings column [5]. Al-

Malah published a book reporting the use of Aspen Plus in Chemical Engineering applications, which 

includes a case study of CO2 removal from gas natural in a trayed scrubber [6]. 
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Despite the above reported list of proved advantages, Chemical Engineering professionals need 

complementary computational tools with which they can implement their own algorithms targeted to 

achieving a more efficient control on the way simulators handle the key process variables. In the 

present research, we report the parallel use of Aspen Plus simulations and Mathcad Prime calculations 

in order to create the most skilled modelling environment. Mathcad Prime is a powerful math software 

for engineering calculations with an easy-to-use interface, natural mathematical notation, units 

intelligence, and which integrates calculations, graphs, text and images. The software has been 

utilized, for example, in the optimization of wastewater treatment [7] and for reaction engineering 

design [8]. By using Mathcad, the algorithms involved in the design of equilibrium-staged and rate-

based absorption columns were readily implemented, and the results obtained were compared with the 

simulations. 

With this contribution we demonstrate that, if successfully integrated, Aspen Plus and Mathcad 

may catalyze a more efficient design of chemical processes, in this particular case involving mass 

transfer between phases, and a better understanding on the effect of the key variables. 

 

2. Materials and methods  
Detailed information is herein presented on the removal of a pollutant (carbon disulfide) from a 

nitrogen gas stream, by counter-current contact with a light paraffin (n-tridecane) in: a) a trayed 

column; b) a random packing (Raschig rings) tower. The examples will, hopefully, provide 

professionals with some key guidelines on how to address process design in such a way that enables to 

get the most out of the latest computational tools available in the market. With that purpose, the 

process simulator Aspen Plus v.9 (from the AspenTech company, USA) and the Engineering maths 

software Mathcad Prime v.4 (from the PTC company, USA) were used. First, the design was carried 

out by using the simulator. The process was fast and simple. Even though, some outcomes still 

remained unclear in terms of the core reason behind. So, the approach consisted in utilizing the 

Mathcad functions to build process models that shed light on the issue. Mathcad and Aspen Plus (used 

as reference) results were then contrasted and compared.  

 

3. Results and discussions 
Case study 1a: Design of a trayed column 

A mixture of CS2-N2 (ideal behavior) is to be washed with n-tridecane (n-C13) in a sieve plates 

column. The feed enters the column at a rate of 0.370 m3/s, at 20 ºC and 1 atm. The solute molar 

fraction is to be reduced from 6.58 to 0.6 %. The n-tridecane mass flow rate, at 20 ºC, is 5900 kg/h. 

The problem was firstly approached with Aspen Plus. Under the “Properties” environment, the 

components (carbon disulfide, nitrogen and n-tridecane) are chosen, and the IDEAL property method 

is specified. Subsequently, under the “Simulation” environment, a RadFrac type column is selected 

from the “Columns” tab within the Model Palette. The column is renamed as ABSORBER. Four 

material streams are connected to the column: two inlets, LIN and GIN, and two outlets, LOUT and GOUT 

(Figure 1a). 

Then, the entering streams LIN and GIN are specified in terms of flow rate, composition, 

temperature and pressure according to the problem statement. The following step is to establish 

conveniently the setup options corresponding to the absorption column. Hence, “Equilibrium” is used 

as the calculation type for an equilibrium-staged column with no condenser and no reboiler (this is 

only for distillation purposes). Valid phases (vapour-liquid) and convergence method (wide-boiling) 

are also specified, and a first trial of 4 theoretical stages (N) is used. The column pressure is set to 1 

atm, and the material streams location is properly assigned. Upon running the simulation, convergence 

is attained very fast and the results are available from the folders “Results” and “Stream Results” 

within Blocks>ABSORBER. 
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(a) (b) 

Figure 1. (a) Aspen plus flowsheet for the absorption column in case study 1a; 

 (b) Schematic diagram of the absorption plate column internals 

 

The results allow concluding that: a) the outlet gas stream does not meet the specification 

(yout=0.0068>0.006), so the number of stages has to be increased; b) the process is not isothermal (due 

to the heat of absorption, the liquid and vapour temperatures inside the column can achieve up to 

nearly 29 ºC); c) the transfer of nitrogen and n-tridecane are negligible, so they can be considered 

simply as “carriers”, and the problem can be tackled as single solute absorption. When the number of 

equilibrium stages is raised to N=5, the column is under specifications, with yout=0.0046 (<0.006). 

This means that the number of equilibrium stages is in fact a fractional between 4 and 5. 

The Mathcad software facilitates the visualization of the solving procedure. We will assume that 

the Raoult’s law applies to the absorption equilibrium studied, so that vapour and liquid compositions 

can be related by: 

nn xTmy )·(                                 (1) 
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where: yn and xn are the solute molar fractions of gas and liquid phases, respectively, leaving the same 

stage (in equilibrium); A, B, C are the Antoine’s equation constants [9] for the solute, CS2; T and P are 

the column temperature and pressure, respectively. As for the operating line, a straight line is obtained 

if the mass balance (over the tower section delimited by the blue line in Figure 1b) is written in terms 

of “solute-free” compositions for gas and liquid, Y and X, respectively: 
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where: GS and LS are the flow rates of N2 and n-tridecane, respectively. 

Some programming is required in order to solve this problem with Mathcad. We need to develop a 

logic algorithm which steps off the stages, with alternate use of the operating and equilibrium lines, 

until a specified condition is met. Figure 2 shows the Mathcad code which enables the visualization of  
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Figure 2. Mathcad worksheet for the calculation of the number of  

theoretical contacts in an absorption plate column. 

 

the graphical solutions displayed in Figure 3. Starting from the point (Xin,Yout), which represents the 

column top concentrations, the program steps off the stages until the Y≥Yin. Please, note that the 

solution is the same no matter if the stages are stepped off from the top down (Figure 3) or, 

alternatively, bottom up. 

For the sake of facilitating the calculations, the operation will be assumed isothermal. However, if 

temperature is set to 20ºC, the number of equilibrium stages results between 3 and 4 (Figure 3a), which 

does not match the above result provided by the Aspen Plus simulation. Instead, for an average column 

temperature of 25ºC, the number of theoretical plates required is between 4 and 5. The code is flexible 

enough so as to analyze the effect of temperature, because both N(T) and Eq(X,T) are expressed as a 

function of T. In consequence, Figures 3a and 3b provide clear evidence of the importance of 
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considering the heat of absorption, which increases the streams temperatures, yielding less favourable 

equilibrium conditions. 

 

 

 
 

Figure 3. Graphical solutions of number of theoretical 

stages for case study 1a: a) 20 ºC; b) 25 ºC 

 

Case study 1b: Design of a packed bed column 

The separation described in case study 1a above will be carried out in a countercurrent packed bed 

column with 1-inch ceramic Raschig rings, working at a flooding percentage of 75 %. 

The selection of components and method, and setting up and specifying the material streams 

entering the column is common to the above description in case study 1a. The main difference is the 

calculation type: “Rate-Based” is now chosen from the drop-down list because continuous contact 
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requires the use of mass transfer coefficients. As the packing is continuous, the number of stages does 

not refer to theoretical plates but to the number of sections that the software uses to plot the profiles (of 

temperature, flow rates, compositions, etc.). We enter, for example, N=6. 

From Blocks>ABSORBER>column internals, a case is created so that the packing type (MTL 

ceramic 1-in Raschig rings) is selected for the whole column including the 6 sections. A first estimate 

of the column height has to be provided, so that the software provides the gas outlet concentration. For 

example, for a packing height of 3 m, yout is 0.0081, which is higher than the required value (0.006). 

By using the option “interactive sizing”, and entering a value of 75 for % approach to maximum 

capacity (L/V), i.e. flooding, the software returns a diameter of 0.828 m, as calculated for the “Eckert” 

pressure drop method. Other methods yield different results (Table 1). 

 

Table 1. Tower diameter and height, as a function of the aspen plus method chosen 
Pressure drop calculation method Pressure drop calculation method 

Eckert, D = 0.828 m Bravo-Fair82, z = 3.81 m 

Gpdc-85, D = 0.906 m Onda-68, z = 3.40 m 

Wallis, D = 0.753 m  

 

Subsequently, the mode is switched to “rating” so as to perform calculations on the column 

height. In Flowsheeting options>Design Specs, we set a new specification, by assigning the outlet 

gas mole fraction a value of 0.006, indicating the column height (variable: CA-PACK-HT) as 

manipulated variable. In this way, the software returns a value of 3.81 m for the column height if 

the method “Bravo-Fair82” is used for the calculation of mass transfer coefficients and interfacial 

areas. Other methods, which can be selected from Blocks>ABSORBER>Rate-based Modeling> 

Rate-based Setup, yield different results (Table 1), demonstrating how important this issue is for a 

correct interpretation of the results displayed by Aspen Plus. Another important issue is to indicate 

“countercurrent” as the Flow model. 

With the aid of Mathcad, the packing size can be determined accurately. The required height for 

a packed bed absorption column can be assessed as follows: 
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where: z is the column height; HTU¬G is the average height of a transfer unit for the gas; and the 

integral is the number of transfer units (NTU), with y and yint being the bulk and interface gas mole 

fractions, respectively, as shown in Figure 4a. 

Please, note that the correlation used below for HTUG is valid for equimolar counter-difussion 

(distillation). Hence, for absorption the value has to be corrected by introducing the log mean 

concentration difference, (1-y)intM in Eq. (5). Moreover, HTUG=G/(kG·a·S), with G being the gas 

molar flow rate, kG·a the volumetric mass transfer coefficient and S the area of the column 

transversal section. According to the Whitman [10] two-film theory, the resistance to mass transfer 

(by molecular diffusion) is only localized in the gas and liquid stagnant films at both sides of the 

interface, with the interfacial concentrations being determined by the equilibrium relationship 

(Figure 4a). 
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(a) (b) 

 

Figure 4. (a) Concentration profiles at both gas and liquid phases; 

 (b) Schematic diagram of the absorption packed column 

 

Based on that, the interface concentrations can be obtained by solving simultaneously these two 

equations: 
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where: HTUG and HTUL are the heights of a unit transfer for gas and liquid, respectively; G and L 

are the molar flow rate of gas and liquid (at the most unfavorable position, i.e. column bottoms), 

respectively. Equation (7) is computed at 25ºC, as in case study 1a. For the whole tower height, 

average values of HTUG and HTUL were calculated as described in [11] by means of the Bolles and 

Fair [12] correlations for random packing, including Raschig rings:  
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where: ScG and ScL are the dimensionless Schmidt numbers for gas and liquid, respectively;  and  

are parameters related to the packing type and size; Cfl is a parameter related to flooding; z is the tower 

height; dc is the tower diameter or 2 ft (which is lesser); WL is the liquid mass velocity; and f, f, f 

are viscosity, density and surface tension correction factors. Average values of the physical properties 

were taken from Aspen Plus. The height provided by Aspen Plus was used as a first estimate of z. 

Upon calculation of z by Eq. (4), HTUG and HTUL were recalculated in successive iterative rounds 

until convergence was attained. The final values were 0.876 and 1.321 ft for HTUG and HTUL, 

respectively. The tower height was computed as 2.90 m, so being smaller than those in Table 1 for the 

two other methods. The use of the Mathcad FIND function facilitated the calculations, with no need of 

programming. Such a function enabled the simultaneous solution of Equations (5) and (6) to be 

determined accurately, and extended to a set of input (x, y) pairs corresponding to the operating line 
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“bulk” concentrations between (xout, yin) and (xin, yout), as shown in Figure 4b. Figure 5 displays the 

worksheet. The interface concentration profiles are visualized in the form of column vectors. The 

computing of Equation (4) is made by using the trapezoid rule, with the number of intervals, N, being 

tailored so as to improve the accuracy of the numerical integration result with no need for further 

effort. From the number of theoretical plates (NTP=4.5) and the packing height (z=2.90 m), the height 

equivalent to a theoretical plate, HETP=z/NTP is estimated to be about 0.65 m. 

 

 
Figure 5. Mathcad worksheet for the calculation of the height 

of a packed absorption column 

 

4. Conclusions 
We herein presented a methodological approach based on computational tools for the study of 

absorption columns in Chemical Engineering. The proposal provided great flexibility for evaluating 
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the effect of different variables. From Aspen Plus, we observed that the heat of absorption caused a 

significant temperature increase, from 20 up to nearly 29ºC at certain column locations; N2 and n-C13 

can be considered as “carriers”, so the problem can be treated as a single solute absorption; the method 

used for the flooding point determined the tower diameter, whilst the tower height depended on the 

equation for the mass transfer coefficients calculation. In this case, the Bravo-Fair82 resulted to be 

more conservative than the others, yielding much larger tower heights. By using Mathcad, we 

implemented a logic algorithm that enabled to visualize the calculation of the number of theoretical 

stages, and to study the effect of temperature. Temperature was seen to greatly affect the absorption 

equilibrium. An increase in temperature yielded an equilibrium curve with higher slope and thus a 

larger number of theoretical stages. Mathcad also enabled to find the interfacial concentrations profile 

all along the column height. 
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