Mercury Removing from the Contaminated Soil Using KI Solution.
The pH Influence

MIHAIELA ANDONI, AUREL IOVI, PETRU NEGREA, LAVINIA LUPA, ADINA NEGREA, MIHAELA CIOPEC

1 University of Medicine and Pharmacy Timisoara, Faculty of Pharmacy, 2 P–ta Eftimie Murgu Str., 300034, Timisoara, Romania
2 Politehnica University of Timisoara, Faculty of Industrial Chemistry and Environmental Engineering Timisoara, 2 P–ta Victoriei Str., 300006, Timisoara, Romania

This paper presents an experimental work regarding the optimal conditions of pH for removing mercury from a contaminated soil sample using 0.1M solution of KI. A test stand with a column packed with contaminated soil has been done. A KI solution with neutral pH passes through the column, then a KI solution with acidic pH passes through another similar column and a KI solution with basic pH through the third column. It was collected periodically 10 mL fraction volume. The extracted mercury concentration from the solution is determined by atomic absorption spectrophotometry. The results show that the optimal conditions for cleaning the soil are using an acidic KI solution with a pH = 1.5 ÷ 2 and 150 mL of KI solution meaning 15 fractions of 10 mL each.

Keywords: mercury, acidic potassium iodide, atomic absorption spectrophotometer

Mercury is a liquid metal at the atmospheric temperature [1]. It can be found in the environment as: elementary mercury (Hg0) less soluble in water, mercuric ion (Hg2+) and mercurous ion (Hg2+) much more soluble in the water which has an affinity for inorganic and organic ligand, alkilmercury which accumulates in living organisms and is toxic for central nervous system [2-4].

The removing of mercury from soil using Na2S2O3, EDTA, KI was presented [5].

This paper presents an experimental work regarding the optimal pH conditions for the removing of mercury from the contaminated soil using 0.1M solution of KI.

The mercury speciation is shown in figure 1 [6].

![Fig.1. Chemical speciation of mercury as a function of pH](image)

Experimental Part

It was used a soil sample collected from Timisoara city site. Main characteristics of the analyzed soil are:
- reaction is low acid or neutral, pH = 6.7 - 7.2;
-humus H = 3 - 4 %;
-total nitrogen Nt = 0.173 %;
mobile phosphorus 24 ppm P;
- sum of interchangeable bases SB = 20.6me/100g soil;
cation exchange capacity T = 21.4me/100g soil;
-exchange acidity SH = 0.8me/100g soil;
degree of base saturation V = 96.3.

The soil sample was contaminated with HgCl2.

A schematic diagram for cleaning mercury polluted soil by column process is shown in figure 2.

![Fig.2. Schematic diagram for cleaning mercury-polluted soil by column process](image)
periodically and analysed for mercury. The mercury analysis was made by atomic absorption spectrophotometry \cite{7,8} using Varian AA110 spectrophotometer.

The whole operation using KI solution with pH = 1.5÷2, and Kisolution with pH = 11÷11.5 was repeated. Each time it was used a new soil sample. The acidic pH is obtained by adding HCl and the basic pH is obtained by adding NaOH. All 10mL sample collected were analysed for mercury. It was also made an sequential analysis for the column soil after the whole KI solution passed through. The column soil was divided in three parts (up, middle and down). The soil sample were digested with aqua regia and then were analysed for the residual mercury.

Results and discussions

The variation of mercury concentration with the nature of KI solution used is shown in figure 3-5.

The experimental results from the figure 3 shows an abrupt decreasing of extracted mercury concentration. From 1390 mg/L after 4 fractions the extracted mercury concentration arrived at 428 mg/L. After that continued to decrease but slowly to 15 mg/L corresponding to 450 mL KI neutral solution meaning 45 fractions. Then extracted mercury concentration remains constant and mercury was not extracted any longer.

The experimental results from the figure 4 shows that the decreasing of extracted mercury concentration from 1095 mg/L to 116mg/L is after 150mL basic KI solution, meaning 15 fractions. After that extracted mercury concentration remained constant, so that mercury is not extracted any longer.

The experimental results from the figure 5 shows a spectacular decreasing of extracted mercury concentration from 5290 mg/L to 191mg/L after 6 fraction of acidic KI solution and after 150mL, meaning 15 fractions the extracted mercury concentration remained constant at10.2 mg/L.

The effect of KI solution was very high especially at low pH according to the mercury speciation showed in figure 1. Iodide ion plays an important role in extracting mercury from soil at pH < 2 because it forms a soluble complex with mercury HgI$_4^{2-}$ as shown below:

\[
sol\cdot Hg(OH)_x + 4I^- \underset{pH\leq 2}{\rightarrow} HgI_4^{2-}(aq) + xOH^- + sol
\]

In figure 6-8 are showed the sequential analyses of the column soil after the KI solution passed through.
The experimental results from figure 6-8 show that for the basic KI solution the mercury is very poor extracted. The best extraction is for acidic KI solution a small part of mercury remaining in soil.

Conclusions
From the experimental data showed in this paper it can be concluded that a mercury contaminated soil can be cleaned up using an acidic KI solution with a pH = 1.5 to 2. Through a column packed with 20 g contaminated soil it passes 150 ml acidic KI solution for the complete cleaning of the soil. The mercury speciation in acidic medium allows the forming of the solution which passes through the soil and does not remain stocked there. This method represents a promising mode for cleaning the mercury contaminated soil.

References

Manuscript received: 7.04.2008